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We numerically investigate the surface states of a strong topological insulator in the presence
of strong electron-electron interactions. We choose a spherical topological insulator geometry to
make the surface amenable to a finite size analysis. The single-particle problem maps to that of
Landau orbitals on the sphere with a magnetic monopole at the center that has unit strength and
opposite sign for electrons with opposite spin. Assuming density-density contact interactions, we
find superconducting and anomalous (quantum) Hall phases for attractive and repulsive interac-
tions, respectively, as well as chiral fermion and chiral Majorana fermion boundary modes between
different phases. Our setup is preeminently adapted to the search for topologically ordered surface
terminations that could be microscopically stabilized by tailored surface interaction profiles.

Introduction.—Three-dimensional topological insula-
tors (3DTIs) [1–6] were predicted in 2007 and have been
discovered subsequently in various material classes [7–
11]. When viewed as a symmetry-protected topologi-
cal phase [12], 3DTIs exhibit a gapped bulk with two-
dimensional gapless edge states protected by U(1) elec-
tron number conservation and time reversal symmetry
(TRS), forbidding any adiabatic deformation into a triv-
ial insulator.

When the protecting U(1) particle number symmetry
is broken, such as by a superconducting proximity ef-
fect, the 3DTI surface yields an unconventional gapped
s-wave superconductor with Majorana modes in its vor-
tex cores [13]. Upon breaking TRS, such as by a magnetic
coating on the surface, the single surface Dirac cone gaps
out, and the Chern-Simons boundary term of the axion
bulk action manifests itself as a ν = 1/2 quantum Hall
effect [14] without fractionalized excitations. The axion
term implies the Witten effect [15] by which an odd-half
integer charge binds to magnetic monopoles in the bulk
of a 3DTI (see also e.g. Ref. 16).

The aforementioned properties of 3DTIs do not involve
interactions in the bulk or at the surface. Assuming that
the gapped 3DTI bulk is negligibly renormalized by in-
teractions, it remains to be investigated how interactions
could affect the 3DTI surface. To begin with, interactions
could contribute to breaking the protecting symmetries
explicitly or spontaneously. Transcending the mean-field
picture, however, interactions could also give rise to a
gapped surface state with intrinsic topological order, al-
lowing a new kind of phase to enter the realm of compet-
ing quantum states of matter on a 3DTI surface. Inves-
tigations of bosonic 3DTI surface states established that
such gapped surface states in the absence of symmetry
breaking are indeed possible for certain kinds of topologi-
cal order [16–20]. Soon thereafter, this idea has been for-
mulated for the physically more relevant fermionic ana-
logue [21–24]. All these conceptually important works
rely on consistency arguments on the level of topological

field theories and constructions that employ contrived ex-
actly soluble models. What type of physically attainable
Hamiltonians would exhibit these exotic ground states
remains a challenging question. [25]

From the viewpoint of Fermiology, the impact of in-
teractions on 3DTI surface states appears related to the
problem of interacting Dirac metals at charge neutral-
ity in two spatial dimensions such as graphene. (For an
early study, see e.g. Ref. [26].) With four Dirac cones in
graphene formed by spin and valley degrees of freedom
as opposed to one on 3DTI surfaces, however, several in-
stabilities for the former do not apply to the latter. For
instance, antiferromagnetism would be driven by inter-
cone scattering centered at different momenta, while an
exciton insulator [27] might not be excluded a priori.

Haldane [28] has recently pointed out that, as the topo-
logical surface state only has support in a 2D k-space
region with an area Ak that may be much smaller that
the Brillouin zone, the surface electrons obey an “uncer-
tainty principle” where they cannot be localized within
an area smaller than (2π)2/Ak, analogous to the “mag-
netic area” h/|eB| for electrons confined to a 2D Lan-
dau level. Ref. [28] noted that this makes the surface
dynamics insensitive to the atomic-scale features of the
surface, rendering exact diagonalization (ED) studies of
such strongly-interacting systems practicable.

In this Letter, we develop a microscopic set-up for nu-
merical studies of interactions on 3DTI surfaces. We
employ a spherical geometry [29] and numerically in-
vestigate the phase diagram for both attractive and re-
pulsive density-density contact interaction U . We find
a superconducting phase for attractions, and ferromag-
netic phases of broken TRS for repulsions. These are the
ν = 1/2 anomalous quantum Hall effect and the gapless
anomalous Hall effect for fillings at and away from the
Dirac point, respectively.

3DTI surface states on the sphere.—In the limit of long
wavelengths, the surface states of a strong 3DTI are de-
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scribed by a two-dimensional Dirac equation given by

H = vn̂ (−i∇× σ) (1)

where v denotes the Dirac velocity of the surface states,
n̂ is the surface normal, and σ = (σx, σy, σz) twice the
physical electron spin vector. For a spherical TI with
radius R, Imura et al. [29] derived that (1) becomes

H0 =
v

R
(σxΛθ + σyΛϕ) (2)

where

Λ = −i
[
eϕ

∂

∂θ
− eθ

1

sin θ

(
∂

∂ϕ
− i

2
σz cos θ

)]
(3)

is the dynamical angular momentum of an electron in
the presence of a magnetic monopole with strength 2πσz,
and (r, θ, ϕ) are spherical coordinates. The monopole
strength or Berry flux through the sphere is hence 2π for
↑ spins (i.e., spins pointing in er direction) and −2π for
↓ spins (i.e., spins pointing in −er direction) [32]. The
origin of this Berry phase is easily understood. Since
the coordinate system for our spins (to which our Pauli
matrices σx, σy, σz refer to) is given by eϕ,−eθ, er, it will
rotate as the electron is taken around the sphere. For
general trajectories, the Berry phase generated by this
rotation is given by 1

2 times the solid angle subtended
by the trajectory. Formally, this phase is generated by
a monopole with strength 2π at the origin. Since the
model preserves time reversal invariance, the monopole
must be of opposite sign for opposite spins.

Substitution of (3) into (2) yields H0 = v
R h0 with

h0 =

(
0 h+

h− 0

)
, h± = ∓

(
∂θ +

1

2
cot θ

)
+

i∂ϕ
sin θ

. (4)

Eq. (4) describes a Dirac Hamiltonian in the sense that

h2
0 =

(
h+h− 0

0 h−h+

)
=

(
Λ2
s0=+ 1

2

0

0 Λ2
s0=− 1

2

)
+

1

2
(5)

is diagonal. Apart from an overall numerical factor,

Λ2
s0 = − 1

sin θ
∂θ (sin θ ∂θ)−

1

sin2 θ
(∂ϕ − is0 cos θ)

2
(6)

is the Hamiltonian of an electron moving on a sphere with
a monopole of strength 4πs0 in the center [30, 31]. The
Landau levels on the sphere are spanned by two mutually
commuting SU(2) algebras, one for the cyclotron momen-
tum (S) and one for the guiding center momentum (L).
The Casimir of both is given by L2 = S2 = s(s + 1),
where s = |s0| + n and n = 0, 1, . . . is the Landau level
index. With Λ2 = L2−s2

0 = (n+1)2− 1
2 for |s0| = 1

2 , we
see that the eigenvalues of h2

0 are given by ε2 = (n+ 1)2.
In terms of the spinor coordinates u = cos θ2e

iϕ2 , v =

sin θ
2e
−iϕ2 introduced by Haldane [30], and their complex

conjugates ū, v̄,

S+ = u∂v̄ − v∂ū, S− = v̄∂u − ū∂v,

Sz = 1
2 (u∂u + v∂v − ū∂ū − v̄∂v̄), (7)

L+ = u∂v − v̄∂ū, L− = v∂u − ū∂v̄,
Lz = 1

2 (u∂u − v∂v − ū∂ū + v̄∂v̄). (8)

The physical Hilbert space is restricted to states with
Sz eigenvalue s0, Szφ = s0φ [31]. With the ↑ and ↓
spin components of the eigenstates of h0 thus restricted
respectively (i.e., Szφ↑ = 1

2φ
↑ and Szφ↓ = − 1

2φ
↓), it is

easy to show that h−φ↑ = −S−φ↑ and h+φ↓ = −S+φ↓,
and hence that

h0 =

(
0 −S+

−S− 0

)
. (9)

The Dirac property of h0 and the eigenvalues of h2
0 imply

that the eigenstates take the form

h0ψ
λ
nm = λ(n+ 1)ψλnm, ψλnm =

(
φ↑nm
λφ↓nm

)
, (10)

where λ = ±1 distinguishes positive and negativ energy
solutions, and m is the eigenvalue of Lz. With h+h− =
S−S+ + 1, we find [31]

φ↑nm = (L−)s−m(S−)nu2s = (L−)s−m v̄nun+1, (11)

where s = n+ 1
2 and m = −s,−s+ 1, . . . , s. With (10),

φ↓nm = − S−

n+ 1
φ↑nm = −(L−)s−m unv̄n+1. (12)

The number of degenerate states in the (n+1)-th Landau
level with energy ε = λ(n+1) is hence 2(n+1), and grows
linearly with |ε|, as required for a Dirac cone [see Fig. 1
a)].
H0 is invariant under both time reversal T ≡ −iσyK

(where K denotes complex conjugation) and parity P ≡
σxPθ (where Pθ takes θ → π − θ). The basis states (10)
transform according to

Tψλnm = λ (−1)m−
1
2 ψλn,−m, (13)

Pψλnm = λ (−1)n+m+ 1
2 ψλn,m. (14)

Momentum space cutoff.—The Dirac Hamiltonian H0

(or h0) governs the behavior of the surface states of a
topological insulator for energies close to the Dirac nodal
point. At higher and lower energies, the surface states
merge with the bulk conduction and valence bands, re-
spectively, and their weight on the surface diminishes.
Consequently, even strong electron-electron interactions
of the order of the bulk gap will only induce small ma-
trix elements between bulk and surface states. It is hence
sensible to study the effects of strong interactions on the
surface states alone, when working in the Fock space con-
structed from the single-particle eigenstates of H0 with
(1 + n)v/R < Λ, where Λ is a cut-off energy imposed
by the bulk energy gap. Importantly, it is impossible
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FIG. 1. (Color online) (a) Single-particle spectrum of the sur-
face states of a spherical topological insulator topological for
n ≤ 2. (b) and (c) Exact diagonalization spectra for the topo-
logical insulator surface states subject to the contact interac-
tion (15) for a Hilbert space restriction n ≤ 2 as a function of
interaction strength U/Λ for b) Np = 12 and c) Np = 9. We
find s-wave superconductor (SC, blue) an anomalous Hall ef-
fect (AHE, red) coinciding with ferromagnetism that becomes
a gapped anomalous quantum Hall phase (AQHE) at half fill-
ing. Two gapless phases include the semimetal (SM, green)
at half filling and a Fermi liquid (FL, yellow). The FL is the
region in phase space where we do not observe an ordered or
gaped ground state. Together with the numerical results for
the spin polarization, these spectra lead to the phase diagram
Fig. 2.

to build orbitals in position space that are localized on
length scales smaller than 2πv/Λ in this restricted Hilbert
space. Thus even if the interaction energy scales are
much larger than Λ, the problem does not reduce to
a classical limit [28]. This is somewhat reminiscent of
the Landau level problem, with the important difference
that single-particle states are exponentially localizable on
long enough distances on the topological insulator surface
while they are power-law decaying in a Landau level on
a compact manifold.

Interactions.—On this restricted single particle Hilbert
space, we consider a contact interaction

Hint = U

∫
S2

d2 rρ↓(r)ρ↑(r), (15)

where ρs(r) is the density operator of electrons with spin
s at position r. This interaction preserves T, P, the num-
ber of particles Np, and the total angular momentum

M =
∑Np

i=1mi. We have studied the phase diagram of
this model as a function of U/Λ and electron filling via
exact diagonalization up to n = 2 (Λ = 3.5v/R, 24 single
particle states) (see Fig. 2).

Magnetic phases.—At half filling and for U/Λ > 3,
the ground state is a ferromagnet. In the finite system,
we find two quasi-degenerate ground states |FM±〉 with
P = ±1 in the M = 0 sector. The magnetization opera-

AHE
FLSC

⌫Np

124

0 0

6

18

1/4

3/4

M

Np

120

U = 1

-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-

-

-
-
-

-

-
-
-

-

-
-
-

-

-
-
-

-

-

Np

U = �1

E
12 AQHESM

0

U

⇤

10 20 30�10�20

FIG. 2. (Color online) Phase diagram for the same model
as in Fig. 1 as a function of interaction strength U/Λ and
filling ν = Np/[2(n0 + 1)(n0 + 2)], with the same color code
for the phases. Left panel: Lower end of the energy spectrum
in the limit U/Λ→ −∞ as a function of the particle number
Np. The superconducting ground state is evidenced by the
degeneracy of the ground states in all sectors of even Np.
Right panel: Magnetization M of the 2-fold (4-fold) quasi-
degenerate ground state manifold in the limit U/Λ → ∞ as
a function of the even (odd) Np. It evidences spontaneously
broken TRS in the thermodynamic limit.

tor in er direction, Σ3 ≡
∫
S2

d2r [ρ↑(r)− ρ↓(r)], anticom-

mutes with the parity operator P, since Σ3 ψ
λ
nm = ψ−λnm.

This implies that 〈FM+|Σ3|FM+〉 = 〈FM−|Σ3|FM−〉 =
0. The magnetization of the ferromagnetic ground
states with spontaneously broken TRS, which emerge
in the thermodynamic limit, is hence given by M ≡
〈FM+|Σ3|FM−〉. A ferromagnetically ordered gapped
surface termination of a 3D topological insulator features
a half-integer Hall effect—a phase that would not be pos-
sible in a pure 2D system without intrinsic topological
order. Thus, the ferromagnetic phase also constitutes an
anomalous quantum Hall phase. Between two domains
of opposite magnetization, there exists a chiral bound-
ary state (see Fig. 3a). Upon hole- or electron doping
the anomalous quantum Hall phase, the system enters a
anomalous Hall phase without a quantized Hall conduc-
tance. This phase can be distinguished from the anoma-
lous quantum Hall phase by the scaling of its (finite size)
gap with U : It converges to a constant for large U , while
in the incompressible phase the gap does not saturate
as U is increased. At high doping, the ground state
is a Fermi liquid which does not violate any symmetry.
We distinguish these two phases by the different quasi-
degeneracies of the ground state and by computing the
magnetization M in this quasi-degenerate subspace [see
Fig. 1 b) and c)] [33].

While the small number of numerically amenable sys-
tem sizes (possible values for the cutoff) does not allow
for a proper extrapolation to the thermodynamic limit,
a comparison of data for n < 3 not shown here indicates
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FIG. 3. (Color online) Numerical evidence for the emergence
of (a) a chiral fermionic mode and (b) a chiral Majorana mode
at the boundary between two ferromagnetic domains and a
ferromagnet-superfluid domain wall, respectively. Shown are
finite size energy spectra for a system restricted to the n ≤ 2.
Magnetic domains on the northern/southern hemisphere are
enforced by Hamiltonian (2) with a mean-field magnetiza-
tion mz(θ)σz with |mz| = Λ, while the superfluid domain is
interaction-induced with U = −4.3Λ. In (a), the level count-
ing is the one expected for a U(1) mode that consists of six
states with m = −5/2, · · · , 5/2 assuming that the levels with
m > 0 are occupied in the half-filled ground state. In (b), the
level counting in the fermion parity sectors are as expected if
one assumes that the chiral Majorana mode at the boundary
consists of three operators with m = −5/2,−3/2,−1/2 which
do not annihilate the ground state.

that the onset of the ferromagnetic phase should remain
at U/Λ ∼ 3 in this limit. Unfortunately, our finite size
studies cannot preclude the appearance of new phases
in larger systems, a concern which may be of particular
validity near the quantum critical point.

Superfluid phase.—At negative U , the system enters a
superfluid phase. We see this from even-odd oscillations
of the ground state energy as a function of particle num-
ber found in the entire range of negative U as well as
a quadratically dispersing mode in the even Np sectors
noticeable for U/Λ . −1, that is the precursor of the su-
perfluid’s Goldstone mode in the thermodynamic limit.
For U/Λ→ −∞, this mode becomes exactly flat, i.e., we
observe a set of degenerate states at M = 0, one in each
sector of even Np (see Fig. 2). The low energy excita-
tions above the ground state in each sector of even Np

show the same structure as the spectrum of two electrons
subject to an infinite repulsive interaction, which consists
of three quasi-degenerate states with M = −1, 0, 1. This
suggests that the low-energy excitations in the superfluid
phase are obtained by breaking up an individual Cooper
pair into two electrons which do not interact with the
condensate. An s-wave superconducting termination of
a 3D topological insulator is a topological superconductor
in the sense that it supports Majorana zero energy states
in vortex cores and a chiral Majorana mode at the bound-
ary with e.g. a ferromagnetic region of the surface (see
Fig. 3b). That we obtain a gapped superconducting state

in the limit U/Λ → −∞ is a direct manifestation of the
localization properties of the single-particle states. If the
single particle states were fully localizable in real space,
pairs of electrons could bind into point-like particles and
the ground state would be exponentially degenerate.

Conclusions.—We have developed a formalism to
study interaction effects on fermionic 3DTI surface states
numerically. From the analysis of a two-body contact
interaction, we found both ferromagnetic and topologi-
cally non-trivial superconducting phases, as well as chi-
ral fermion and chiral Majorana fermion boundary modes
between different phases. Several branches of future in-
vestigation can be anticipated, such as the application to
bosons and studies of more sophisticated interaction pro-
files. The formalism establishes an ideal testing ground
for topologically ordered TI surface state scenarios.
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