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Abstract

Bilayer graphene (BLG) with a tunable bandgap appears interesting as an alternative to graphene

for practical applications, thus its transport properties are being actively pursued. Using density

functional theory and perturbation analysis, we investigated, under an external electric field, the

electronic properties of BLGs in various stackings relevant to recently observed complex structures.

We established the first phase diagram summarizing the stacking-dependent gap openings of BLGs

for a given field. We further identified high-density midgap states, localized on grain boundaries,

even under a strong field, which can considerably reduce overall transport gap.
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The discovery of graphene has opened new avenues for studying the role of dimension-

ality on the fundamental properties of materials [1]. Although graphene shows excellent

electrical properties [2], the zero bandgap of graphene limits its practical application as an

electronic device. On the other hand, gap opening is possible in BLG, thus making it a

very promising material that overcomes graphene’s key limitation while retaining many of

its interesting properties. For example, massive Dirac fermions in BLG exhibit a bandgap

tunable by applying a transverse electric field (E-field) [3]; this has been demonstrated by

optical [4] and electrical transport measurements using dual-gated devices [5, 6]. However,

these measurements leave a couple of unsolved problems: 1) the origin of unexpectedly small

transport gaps that are two orders of magnitude smaller than optical gaps [5] and 2) the

origin of anomalous low-temperature (< 2 K) transport behaviors dominated by hopping

between localized midgap states, presumably induced from disorders or defects [5, 7].

Recent experiments have revealed complex configurations in BLG, including various

stacking domains induced by rotational faults and soliton formation [8–10]. While AB

stacking is energetically most favorable, the non-AB-stacking region can be stabilized by a

minute twist [11] and the stacking boundary [8]. The local stacking configuration is strongly

coupled to its electronic structure and its response to an external E-field. Therefore, it

is critically important, fundamentally and practically, to understand the observed complex

stackings and their impact on the overall electronic properties.

In this letter, using the framework of an effective Hamiltonian based on density functional

theory (DFT) and perturbation theory, we analyze gap-opening properties of BLGs near the

high-symmetry stackings (AA, AA′, and AB), under an applied E-field. We establish a phase

diagram for the stacking-dependent gap openings, and further identify grain boundaries

containing non-AB stackings as a source for high-density midgap states even under a strong

E-field. Our findings offer insight to understanding the intrinsic transport properties of

BLGs.

Our DFT calculations adopt the Perdew-Burke-Ernzerhof version of exchange-correlation

functional [12] and the projector augmented wave method [13] for ionic potentials as im-

plemented in the Vienna Ab Initio Simulation Package [14]. We obtain interlayer distances

between 3.25 Å (AB) and 3.45 Å (AA) with van der Waals correction [15]; interlayer distance

of all the configurations is fixed at 3.35 Å (unless specified) with practically no changes in

their band structures. To ensure an accurate bandgap, the 2D DFT band structure near
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FIG. 1. (Color online). (a) Schematic band structures of AA, AA′, and AB. The solid lines are

reflection planes, where the translation vectors (Vx,Vy) describe the relative displacement between

the two layers in the xy plane. (b) Modeling of the two AB-stacking boundary. (c) Stacking-

dependent potential energy of BLG per unit cell, where the origin corresponds to AA stacking.

A lattice Wigner-Seitz cell is highlighted by the solid white line, and the arrow denotes the dis-

placement vector between the two AB-stacking domains shown in (b). (d) Minimum energy path

between the two AB stackings.

the K point is interpolated [16] using maximally localized Wannier functions [17]. Effective

Hamiltonians are constructed with the obtained hopping parameters truncated to the first

nearest interlayer hoppings (see details in Supplemental Materials).

One of the intriguing properties of BLG is that a change in weak interlayer interaction

(which is an order of magnitude smaller than the intralayer coupling strength) accompanied
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by a modification in stacking configuration can significantly alter the electronic structure

around the Fermi level. Figure 1(a) illustrates schematic band structures of the high sym-

metry stackings, where we define systems with equivalent two sublattices (AA and AA′), as

sublattice-symmetric systems; otherwise, they are sublattice-asymmetric stackings (AB).

Figure 1(b) shows the atomistic modeling of an experimentally observed domain bound-

ary [9], containing continuous structural transition between two AB-stacking regions. Figure

1(c) plots stacking-dependent potential energy with optimized interlayer distances in the 2D

translation vector space, where AB stacking is used as a reference point. The arrow denotes

the displacement vector between the left and right domains in Fig. 1(b). Local stacking

configurations of the transition region are distributed on this arrow. To remove this soliton-

like boundary, one needs to displace the one on the left or right domain by a displacement

vector. The minimum energy path between the two AB stackings lies along the edge of

the hexagon with an energy barrier of 5.3 meV/cell (see Fig. 1(d)). Though this energy

barrier seems quite small, the stacking domain should move as a whole so that the high

energy barrier, proportional to the domain area (> 104 unit cell), should be overcome. This

explains the observed stability of non-AB stacking regions.

The gap-opening mechanism of BLGs can be highly stacking dependent. We first examine

the individual band structures near the high-symmetry stackings, then discuss the gap-

opening properties across complex domain boundaries. Their effective Hamiltonian in crystal

momentum (k) space can be described by a 4 × 4 matrix with the basis Aup, Bup, Adn,

and Bdn, with A and B sublattice indices and the upper and lower graphene layers for up

and dn, respectively. The 2 × 2 block-diagonal components correspond to the individual

graphene layers while all others describe interlayer coupling. We focus only on the effective

Hamiltonian near the K points; band structures around K ′ can be obtained by applying

time-reversal symmetry to those of K.

First we consider the configurations of AA stacking. Neglecting small Bloch phase vari-

ations under the Fourier transformations of interlayer coupling, the Hamiltonian of AA

stacking around K becomes

H0(k) +




0 0 γ̃AA 0

0 0 0 γ̃AA

γ̃AA 0 0 0

0 γ̃AA 0 0



, (1)
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with H0(k) defined as

H0(k) ≡




0 ~vFk+ 0 0

~vFk− 0 0 0

0 0 0 ~vFk+

0 0 ~vFk− 0



, (2)

where the Fermi velocity multiplied by the reduced Planck constant becomes ~vF ≡
∂E
∂k

∼ 5.4

eV·Å and k± ≡ ky ± ikx. γ̃AA (= −0.34 eV) is obtained by the Fourier transformation of

the interlayer hopping between Aup (Bup) and Adn (Bdn), γAA [18]. The hopping parameters

between Aup (Bup) and Bdn (Adn) become zero because the Bloch phases of three interlayer

nearest neighbors cancel each other at the K point, γ̃AB = 0.

By changing our basis to the bonding and antibonding state of each sublattice, the

decoupling of two Dirac cones becomes more transparent:

H0(k) +




γ̃AA 0 0 0

0 γ̃AA 0 0

0 0 −γ̃AA 0

0 0 0 −γ̃AA



, (3)

a block-diagonal Hamiltonian describing two Dirac cones with energy shift ±γ̃AA (see

Fig. 1(a)).

In the AA′-stacking configuration, one can also explicitly illustrate the decoupling of

Dirac cones by changing the basis to interlayer bonding and antibonding of phase-shifted

sublattices [ 1√
2
Aup(Bup) ±

1√
2
exp (−2πi

3
)Adn(Bdn)]. The Hamiltonian of AA′ stacking then

becomes

H0(k) +




γ̃AA −γ̃AB 0 0

−γ̃AB γ̃AA 0 0

0 0 −γ̃AA γ̃AB

0 0 γ̃AB −γ̃AA



, (4)

where γ̃AA = −0.11 eV and γ̃AB = −0.22 eV, corresponding to two Dirac cones separated

by 0.22 eV in energy with an additional 0.08 Å−1 splitting in k-space. Wavefunctions of

the decoupled Dirac cones of both AA and AA′ stackings have interlayer antibonding and

bonding characteristics, depicted respectively in red (shaded) and blue (hatched) in Fig.

1(a).
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FIG. 2. (Color online) Projected band structures aroundK point. Each configuration is represented

by the translation vector in the irreducible zone of the lattice Wigner-Seitz cell (triangle), where

the lower vertex defines the origin. k‖ and k⊥ are defined for each configuration. Energy (k-space)

ranges from−0.5 eV (−0.2 Å−1) to 0.5 eV (0.2 Å−1) relative to the Fermi level (K). Band structures

near the high-symmetry stackings are projected onto the k‖-energy and k⊥-energy planes without

and with an E-field. The inset in the third column of AA stacking highlights a small bandgap

(≈ 10 meV).

The Hamiltonian of AB staking can be written as

H0(k) +




0 0 0 γ̃AB

0 0 0 0

0 0 0 0

γ̃AB 0 0 0



; (5)

doubly degenerate states at the Fermi level are composed of one sublattice per layer, with

no direct coupling between them, and two Dirac points are merged at the K point and split

into bonding, antibonding, and nonbonding types (see Fig. 1(a)).

Next, we trace how a small translation or an external E-field, perturbations, can change

the band structures near the Fermi level. The AA panel of Fig. 2 summarizes projected (onto

k‖ and k⊥) band structures for around-AA-stacked graphenes. Since interlayer hopping

parameters are the same, one cannot generate an onsite energy difference in the 2 × 2

diagonal block simply by atomic translation, which excludes the direct coupling between two

crossing bands (i.e., no gap opening). At the Fermi level, the hole band of one Dirac cone is

degenerated along with the electron band of the other Dirac cone. The Fermi surface of the
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AA stacking is the intersection of two vertically shifted cones. A small translation results in

a slight k-shift and a coupling of two Dirac cones; a k-shift changes the circular intersection

into a tilted ellipse, while a coupling introduces energy splitting at the intersection. In

general, the energy splitting depends on the angular position of the intersection and becomes

zero at two points. These form two crossing points near the Fermi level as shown in the

second row. An applied E-field introduces an additional energy splitting that also depends

on the angular position and becomes zero at two points. When an E-field is combined with a

sublattice-symmetric translation, their zero splitting points coincide and the system remains

metallic. In contrast, with the sublattice-asymmetric translation, each zero coupling points

are at a different position and the crossing points disappear (in the inset in the fourth row).

Especially, when sublattice-asymmetric translation is applied toward AB stacking in the

presence of a reflection and time-reversal symmetry, the minimum bandgaps occur along k‖

and are located exactly at the same energy. This means that the critical field for opening

a gap is infinitesimally small. The perturbational results on the size of the bandgap are

summarized in Table 1. As an example, the fourth row in the AA block of Fig. 2 shows a

small bandgap of ∼10 meV (see the inset) for an asymmetric translation of 0.3 Å and an

E-field of 0.5 eV/Å.

Changes in band structures for around-AA′ stacking are well pronounced in the k‖ = 0

plane [the blues lines in the second and fourth rows of the AA′ block in Fig. 2]. Of

the four bands in that plane, only different Dirac cones can be coupled by a translation.

In contrast, under sublattice-symmetric translation, only parallel-band pairs of each Dirac

cone are coupled, resulting in a balanced repulsion between them. On the other hand, under

sublattice-asymmetric translation only non-parallel-band pairs of each cone are coupled,

which induces an unfavorable crossing. In this slice, E-field only couples parallel-band pairs

for sublattice-symmetric translation. Though the crossing point in a Dirac cone does not

open, each Dirac cone’s crossing band now has a small component of the opposite Dirac cone.

Under an E-field with sublattice-symmetric stacking, crossing bands still remain crossed

because one crossing band does not have a component parallel to the other crossing band.

But if an E-field is applied to sublattice-asymmetric stacking, each crossing band now has

a small component parallel to the other crossing bands, which opens a small bandgap. In

spite of Dirac cones opening, the energy level of each Dirac point is different [the fourth

row in the AA′ block of Fig. 2], thus a relatively strong E-field is required to change this
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TABLE I. Analytic expressions of (pseudo-) gaps when a small translation x from reference stacking

configurations is combined with an interlayer potential difference U , where ∆DE(k) denotes energy

(crystal momentum) separation of two Dirac points.

reference AA AA′ AB

translation
toward AB toward AB any direction

direction

(pseudo-) gap ~vF
∆Dk(x)
2∆DE(x)

U
∆γ̃(x)
∆DE(x)

U
γ̃AB√

γ̃2AB + U2
U

parameters

~vF = 5.4 eV·Å ∆γ̃(x) ≡ Re
(
exp(−2π

3 i)
(
γ̃AB−γ̃BA

2

))
γ̃AB = 0.30 eV

∆Dk(x) = 0.03x Å−2 0.2x < ∆γ̃(x) < 0.3x (eV/Å)

∆DE(x) = 0.68 eV ∆DE(x) = 0.22 eV

U (E = 0.5 V/Å) 0.15 eV 0.52 eV 0.55 eV

pseudogap into a true gap.

Finally, we move on to the properties of around-AB stacking. As the stacking deviates

from exact AB, the doubly degenerate states at the K point immediately split into two

crossing points [the second and third columns of the AB block in Fig. 2]. From a sym-

metry viewpoint, the threefold rotational symmetry of monolayer graphene is recovered in

AA- and AB-stacked BLG. Combined with translational symmetry, this imposes a threefold

symmetry around the K point. Because two separated crossing points are not compatible

with the symmetry, wavefunction symmetries change during the merging of two crossing

points [19]. Around AB stacking, an E-field opens a bandgap. Especially, from the eigen-

values of the Hamiltonian, the bandgap is
γ̃AB√

γ̃2
AB + U2

U , where γ̃AB = γAB = 0.30 eV. All

the perturbational results for the bandgap are summarized in Table 1.

Figure 3(a) presents the stacking-dependent bandgap under a perpendicular E-field of

0.5 V/Å. A sizable bandgap opens only around the AB stacking while the rest still remains

metallic. As E-field goes to zero, the metal-semiconductor phase boundary approaches the

line connecting AA and AB stacking, and the entire region becomes metallic. Though

no bandgap opens by a pure translation, a minute bandgap (<7 meV) was reported [20]
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for a specific rotation angle without any E-field. To investigate the effect of the non-AB

stacking region on the transport property, we constructed an atomic model of a stacking

domain boundary with a transition length of 50 Å (Fig. 3 (c)). Tight-binding parameters

are assigned to each atom according to its local stacking configuration [21]. When 0.5 eV

of onsite energy difference between two layers is applied (0.5 V/Å of E-field), a bandgap

opens at the AB stacking region while there remains finite density of states at the non-AB

stacking region (Fig. 3(d)). This indicates that a high density of midgap states is localized

along stacking boundaries even under a strong E-field. Because the apparent transport

gap is actually estimated from the activation energy of the carrier, a conduction through

these midgap states can explain the small transport gap and the low-temperature hopping

transport in dual-gated devices.

In summary, we theoretically investigated stacking-dependent gap-opening properties of

symmetry-broken bilayer graphenes, and established a bandgap phase diagram.
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FIG. 3. (Color online) (a) A stacking-dependent bandgap under a perpendicular E-field of 0.5

V/Å. A lattice Wigner-Seitz cell is shown by broken lines and an irreducible zone by solid lines.

(b) Metal-semiconductor phase boundaries for different electric field strengths are shown for the

irreducible zone. (c) Local stacking configurations of simulated structure are represented by colors

in the triangle at left. (d) Local densities of states of the spotted region in (c) are plotted from the

left with (dotted line) and without (solid line) an E-field.
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