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RNA is highly sensitive to the ionic environment, and typically requires Mg2+ to form compact
structures. There is a need for models capable of describing the ion atmosphere surrounding RNA
with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-
grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for
ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it
is treated implicitly by a generalized Manning counterion condensation model. The model extends
Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations,
and the ion inaccessible volume of RNA. The model is tested against experimental measurements of
the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA
interaction free energy. The excellent agreement with experiment demonstrates the model captures
the ionic dependence of the RNA free energy landscape.

RNA is sensitive to the ionic environment because it is
strongly negatively charged and yet frequently folds into
compact configurations. Such compact configurations re-
quire positive counterions to balance RNA charge. Mg2+

is especially effective in stabilizing compact configura-
tions as most RNA tertiary structure will not form in the
absence of Mg2+ [1]. Simplified or coarse-grained molec-
ular dynamics simulations are an ideal tool for study-
ing the molecular details of slow processes in RNA [2–6];
however, their accuracy is limited at present by the lack
of accurate and computationally efficient descriptions of
the atmosphere of ions associated with RNA. We gen-
eralize the theory of Manning counterion condensation
[7] to arbitrary geometries and concentrations, making
it applicable to compact RNA structures, and show this
model accurately represents the ion atmosphere around
RNA.

The ubiquity of Mg2+ in RNA structure and dynam-
ics arises because Mg2+ is small and divalent. The small
size of Mg2+ allows it to interact more closely with RNA
than larger ions [8, 9]. Because Mg2+ is divalent, only
half as many Mg2+ as monovalent ions must be localized
around RNA to balance its charge, allowing twice the
entropic cost to be paid per ion [7, 10]. Consequently,
Mg2+ can outcompete monovalent ions present at much
higher concentrations to associate with RNA. The diva-
lence of Mg2+ also allows it to induce effective attraction
between otherwise repulsive phosphates [10–12]. As a re-
sult, Mg2+ strongly favors compact RNA conformations
[10], and can slow kinetics by raising the free energy of
less compact transition states [13]. In many cases, chang-
ing Mg2+ concentration can switch stability between two
conformational basins [14–17]. Electrostatic models ca-
pable of describing Mg2+-RNA interactions are needed

to connect with these experiments and to describe the
RNA energy landscape.

The simplest model of electrostatics in ionic solutions
is Debye-Hückel electrostatics, in which the ion density is
given by the linearized Boltzmann distribution, and di-
electric heterogeneity and ion accessibility are neglected.
Coarse-grained models of RNA have used a Debye-Hückel
treatment of KCl [18, 19]. Such a treatment is not ideal
for Mg2+ because the linearized Boltzmann distribution
is a poor approximation for strong Mg2+-RNA interac-
tions near RNA. In addition, Debye-Hückel is unable to
produce the effective attraction between phosphates that
Mg2+ can induce.

Nonlinear Poisson-Boltzmann (NLPB) electrostatics
[20–22] removes most of the Debye-Hückel approxima-
tions at greater computational expense. NLPB is a mean
field treatment, and neglects ion-ion correlations [23, 24]
and ion size effects [25–27]. For monovalent ions where
these correlations are weak, NLPB performs well, but
is less accurate for divalent Mg2+ [26, 28]. The tightly
bound ion model [24, 29] accounts for ion-ion correla-
tions, and captures the ionic atmosphere well, but is a
Monte Carlo technique, and has not yet been adapted
for molecular dynamics. Manning counterion condensa-
tion theory [7, 30, 31] can describe nonlinear effects near
the RNA, but is typically limited to low concentrations
and linear or helical RNA geometry.

We recently developed a coarse-grained model with ex-
plicit Mg2+ and implicit KCl that revealed the impor-
tance of accounting for competition between Mg2+ and
condensed KCl [32]. As a first approximation, KCl con-
densation was treated as a static function of Mg2+ con-
centration and fit to native basin experimental data. This
approximation rendered the model only valid for native
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basin fluctuations of experimentally characterized RNA.
A dynamic, physics-based description of KCl condensa-
tion is needed for the model to have any predictive power.

In this letter, we introduce a generalized Manning
counterion condensation model that describes folded
RNA at physiological ionic concentrations. Mg2+ is
treated explicitly to account for ion-ion correlations,
while KCl condensation is described by the generalized
Manning model. We add the electrostatic model to a
coarse-grained model of RNA to capture native basin
fluctuations. The coarse-grained model is an all heavy
atom structure-based model [32–34] with a theoretical
base in the energy landscape theory of protein folding
[35–37]. The model is in good agreement with experimen-
tal measurements of the ion atmosphere within the native
basin for several compact RNA molecules at varying KCl
and Mg2+ concentrations. The model is also applicable
beyond the native basin, and the implicit treatment of
KCl makes the model computationally inexpensive.

Classical Manning counterion condensation [7] occurs
on an infinite line of charge in the low concentration limit
due to competition between mixing entropy and electro-
static energy. The mixing free energy per phosphate to
condense θ ions per phosphate is given by

GMix = kBTθ ln

(
θ

ecV

)
, (1)

where kB is Boltzmann’s constant, T is the temperature,
c is the bulk concentration of the counterion, V is the vol-
ume per phosphate into which the counterions condense,
and e is Euler’s number. The condensed ions effectively
rescale the charge of the phosphates by 1 − zθ, so the
electrostatic energy per phosphate is given by

GE = kBT (1− zθ)2 F , (2)

where z is the charge of the counterion and F is the
Debye-Hückel energy of the bare polyelectrolyte charges
per phosphate in units of kBT . For an infinite line of
charge at low concentration, GMix and GE (through F )
both diverge like ln c, so the condensation is constant over
a wide range of counterion concentrations [7].

Condensation on RNA under physiological conditions
differs from classical Manning condensation in two im-
portant regards that require the inclusion of additional
physics. First, folded RNA is not a line of charge, so F
does not diverge like ln c, and condensation is not con-
stant over wide concentration ranges. Folded RNA rather
forms compact and irregular structures, so a model allow-
ing varying condensation on each phosphate is required
to account for the electrostatic heterogeneity of the phos-
phates. This can be accomplished by making F a dy-
namical function of phosphate coordinates and adding
appropriate phosphate indices to Equations (1) and (2).
Second, salts are present at intermediate concentrations.
As a result, there is a large population of screening ions

near the RNA in addition to the condensed ions that con-
tribute to the mixing free energy. Many of these implicit
screening ions occupy the ion inaccessible volume of the
RNA and must be removed. Accounting for screening
ions and ion inaccessible volume requires more substan-
tial extensions to Manning counterion condensation that
we outline below. The resulting generalization of Man-
ning counterion condensation may also have applications
in polyelectrolyte theory beyond RNA.

The K+ and Cl− distributions may be divided into
screening ions and Manning condensed ions. The
screening ion density is given by a linearized Poisson-
Boltzmann distribution, while the condensed ion density
captures deviations of the distribution from linearity near
RNA. In Debye-Hückel theory, screening ions of species
s have a local density

nDH,s(~r) = cs

(
1− zsΦ0 (~r)

kBT

)
(3)

that varies linearly with the electrostatic potential Φ0,
where cs and zs are the concentration and charge of ionic
species s. For strong potentials, non-physical negative
concentrations are possible, as frequently occurs for Cl−

near RNA. These negative concentrations must be cor-
rected by a corresponding positive concentration of con-
densed ions. Consequently, it is necessary to account for
both condensed K+ and Cl− to avoid negative local con-
centrations of Cl−.

In the present work, the density of Manning condensed
ions is modeled as the sum of two normalized Gaussian
distributions P (r, σ) centered on the position of every
RNA charge

nµ,s (~r) =
∑
i

µisP (|~r − ~ri| , σµ) (4)

nη,s (~r) =
∑
i

ηisP (|~r − ~ri| , ση) , (5)

with charges placed on every phosphate. The total den-
sity of ions is then nDH,s+nµ,s+nη,s. The mixing Gaus-
sian controls mixing free energy and the size σµ = 0.7 nm
is set to the Bjerrum length. The hole Gaussian enforces
the ion accessibility by offsetting any ions too close to
the RNA and the size ση = 0.34 nm is set approximately
to the closest approach of a hydrated ion to RNA. The
sensitivity of the results to the two free parameters σµ
and ση is shown in the supplemental material. The Man-
ning condensed ions of species s at a charged atom i are
then given by θis = µis + ηis. In the model, K+ and
Cl− only condense on phosphates or RNA charges, so
µis = ηis = 0 at explicit Mg2+ charges.

In contrast to the implicit K+ and Cl− distributions,
the Mg2+ distribution is determined by the location of
the explicit ions. In addition to electrostatic forces, Mg2+
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ions interact with an r−12 excluded volume potential pa-
rameterized to keep each Mg2+ the fully hexahydrated
distance from the RNA and other Mg2+ ions [32].

The electrostatic free energy of the RNA and the con-
densed ions can be given in terms of Debye-Hückel inter-
actions

φ (rij , 0) = kBT
lB
rij

exp (−κrij) (6)

φ (rij , σ) = kBT
∑
a=±1

−1

2

lB
arij

exp

(
1

2
κ2σ2 + κarij

)
×
(

1− erf

(
arij + κσ2

σ
√

2

))
, (7)

where rij is the distance between particles i and j, κ is
the inverse Debye length, and lB is the Bjerrum length
(approximately 7 Å in water at 300 K). The interaction
between two point charges is φ(rij , 0), while the interac-
tion between a point and a Gaussian of variance σ2 is
φ(rij , σ), and the interaction between two Gaussians of
variance σm

2 and σn
2 is φ(rij ,

√
σm2 + σn2). The total

electrostatic free energy GE and electrostatic potential Φ
are then

GE =
1

2

∑
ij

∑
mn

qm,iqn,jφ
(
rij ,

√
σm2 + σn2

)
(8)

Φm (~r) =
∑
j

∑
n

qn,jφ
(
~r − ~rj ,

√
σm2 + σn2

)
, (9)

where the sum on indices m and n runs over the three
labels {0, µ, η}, denoting points, mixing Gaussians, and
hole Gaussians, respectively; and the sum on i and j
runs over all charged atoms including i = j (except when
m = n = 0) so that condensed ions can interact with
their own phosphate. For points, σ0 = 0 nm, and q0,i
denotes the charge of particle i, while the condensed ion
charges are qµ,i =

∑
s zsµis and qη,i =

∑
s zsηis. The

actual potential is Φ0, while Φµ and Φη are the average
of the potential over the Gaussian regions.

At intermediate salt, the mixing free energy in Equa-
tion (1) must be reformulated to include screening ions.
The substitution n = θ/V allows the mixing free energy
to be expressed in terms of local ion density and conden-
sation volume. The local density nMix,is can be approxi-
mated by averaging nDH,s over the mixing Gaussian, and
adding nµ,s

nMix,is = cs

(
1− zsΦµ (~ri)

kBT

)
+ nµ,s (~ri) . (10)

The effective volume a Gaussian occupies can be esti-
mated as the inverse of the local Gaussian density

Vm,i = 1/
∑
j

P (rij , σm) , (11)

where the sum on j runs over all phosphates. The density
of holes nη,s(~ri) is omitted from Equation (10) because
this term serves primarily to make the ion density av-
erage to zero within the hole volume Vη,i, consequently
this empty volume is subtracted off the mixing volume
Vµ,i giving Vµ,i − Vη,i. The mixing free energy is then
approximately

GMix =
∑
i

∑
s

kBTnMix,is (Vµ,i − Vη,i) ln (nMix,is/ecs) .

(12)
The potential ensures nMix,is ≥ 0, so any nonphysical
negative concentration of screening ions will be balanced
by a positive concentration of condensed ions.

The electrostatic and mixing free energy of the screen-
ing ions are typically ignored because they cancel each
other for weak potentials. Since the mixing free energy of
the screening ions within the volume Vµ,i−Vη,i has been
included in the free energy, the electrostatic free energy
of the screening ions in this region must be included as
well. This free energy is given by

GES =
1

2

∑
i

∑
s

zscs

(
1− zsΦµ (~ri)

kBT

)
(Vµ,i − Vη,i) Φµ (~ri) .

(13)
With generalizations for the electrostatic free energy

GE and mixing free energy GMix +GES, it is necessary to
enforce ion accessibility near the RNA. The concentration
of each ionic species nHole,is within the excluded volume
of polyelectrolyte particle i is

nHole,is = cs

(
1− zsΦη (~ri)

kBT

)
+nµ,s (~ri)+nη,s (~ri) , (14)

where the screening ions have been averaged over the
hole Gaussian. Since ions are excluded from this volume,
nHole,is = 0. Rather than using constraints, a strong
harmonic restraint

GHole =
1

2
kHole

∑
i

∑
s

nHole,is
2 (15)

is added to the potential to keep η within 0.01 ions of
the correct value. Furthermore, to maintain stability
and avoid overfitting the ion distribution, µis and ηis
are weakly harmonically restrained to nµ,s(~ri)Vµ,i and
nη,s(~ri)Vη,i, respectively by a term GRest. Together with
the Mg2+ and RNA positions, the four condensation vari-
ables for each phosphate (µi+, µi−, ηi+, and ηi−) are
treated as coordinates that evolve by Langevin dynamics
on the potential GE +GMix +GES +GHole +GRest. Pa-
rameter values and other simulation details may be found
in the Supplemental Material.

The ion atmosphere can be quantified by the number of
excess ions of each species which associate with an RNA.
The number of excess ions of a particular ionic species
varies with concentration, but the total charge of all ex-
cess ions must balance the RNA charge. At fixed KCl
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FIG. 1. The model captures excess Mg2+ over a wide range
of concentrations for both (A) the adenine riboswitch at 50
mM KCl, and (B) a 58 nucleotide ribosomal fragment. Ex-
perimental results are plotted as lines and simulation results
are plotted as dots.

concentration, with c+ � c2+, the Mg2+-RNA interac-
tion free energy

∆GMg2+ = −kBT
∫ c2+

0

Γ2+d ln c′2+ (16)

is directly related to the excess Mg2+, Γ2+, as a function
of Mg2+ concentration [38]. Γ2+ can be measured ex-
perimentally with HQS fluorescence [15–17, 38] or other
techniques [39], and can be calculated from simulations
[32, 40]. Because Γ2+ bridges between simulation and
experiment and is directly related to the Mg2+-RNA in-
teraction free energy, it is an ideal quantity for testing
models of RNA electrostatics.

The model is able to reproduce Γ2+ for the adenine
riboswitch at 50 mM KCl and for a 58 nucleotide frag-
ment of the ribosome at several KCl concentrations (Fig-
ure 1). Experimental data for the adenine riboswitch
and ribosomal fragment are taken from reference [15]
and [16], respectively. The transferability of the model
to several KCl concentrations in Figure 1B bolsters the
model, as simpler models lacking RNA excluded volume
in Equation (15) can be fit at a single KCl concentration,
but break down when applied to multiple KCl concen-
trations (data not shown). Lower Mg2+ concentrations
were not explored for the ribosomal fragment because
the system undergoes a conformational change we did
not wish to model near the inflection point in the exper-
imental data. With further calibration of the underlying

10-5 10-40

1

2

3

4

5

6

Mg2+ concentration [M]

Γ 2
+ [

io
ns

]

54 mM KCl
79 mM KCl
Simulation
Rigid Simulation
Experiment

0

0.04

0.08

0.12

0.16

0.2

10-3

Γ
2+  [ions/PO

4 ]

FIG. 2. Predictions of the model are too high for the beet
western yellow virus pseudoknot in the rigid simulation where
the RNA is fixed in the crystal structure (open circles). The
agreement with experiment is quite close if native basin fluc-
tuations are included (solid circles).

coarse-grained model, the generalized Manning conden-
sation model could be used to probe the electrostatic ef-
fects driving the conformational transition. The excellent
agreement over a wide range of Mg2+ and KCl concen-
trations suggests the model is capturing the electrostatic
free energy quite well.

Native basin fluctuations can have a notable effect
on Γ2+. For the beet western yellow virus pseudoknot
the number of excess Mg2+ has been measured [17]. In
the generalized Manning condensation model, the excess
Mg2+ is overestimated if the RNA is frozen in the crys-
tal structure, but can be corrected by allowing the RNA
to fluctuate (Figure 2). This occurs because the crys-
tal structure contains a negatively charged pocket be-
tween the 5’ triphosphate tail and the rest of the pseu-
doknot where Mg2+ binds nonspecifically. This pocket
is not stable in solution due to phosphate-phosphate re-
pulsion, resulting in accurate Γ2+ predictions when RNA
dynamics are included. The sensitivity of Γ2+ to small
native basin fluctuations reveals the importance of mod-
eling the full conformational ensemble to accurately pre-
dict ∆GMg2+ . Sensitivity has been previously observed in
partially unfolded ensembles, which exhibit larger fluctu-
ations [16, 17]. Our model is ideally designed to capture
these conformational ensembles.

A comparison of the generalized Manning model,
NLPB, and previous explicit solvent predictions [40] of
Γ2+ for the SAM-I riboswitch is shown in the supple-
mental material. Explicit solvent simulations appear to
underpredict Γ2+, possibly because K+ can dehydrate
too easily [41] and drive away Mg2+. Many ion param-
eters have been proposed for explicit solvent simulation
[42–45]. The excess Mg2+ is a sensitive measure of RNA
electrostatics that may be useful in future calibration of
explicit solvent ion parameters.

The generalized Manning model provides a more accu-
rate description of the ion atmosphere than the conven-
tional descriptions of Debye-Hückel, nonlinear Poisson-
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Boltzmann equation, classical Manning counterion con-
densation, and possibly even explicit solvent simulation.
This success is due in part to the explicit treatment of
Mg2+ that accounts for ion-ion correlations [24] absent
from mean field treatments. The implicit treatment of
KCl makes the model computationally inexpensive, both
by significantly reducing the number of particles in the
large boxes required for a bath of free Mg2+, and by al-
lowing the use of the short range Debye-Hückel potential
rather than the long range Coulomb potential.

Our previous model of RNA electrostatics served as
a valuable proof of concept: Γ2+ can be predicted cor-
rectly by accounting for KCl condensation [32]. In that
model, KCl condensation was treated as an experimen-
tally fit function of Mg2+ concentration that was static
within a simulation, but this approximation introduced
extensive limitations that made the model untransferable
and unusable for dynamics. The fit to experiment meant
the model could only be used on RNA systems at spe-
cific KCl concentrations where Γ2+ had been measured.
The assumption of static KCl condensation confined one
to a single conformational basin where KCl condensation
does not change and introduced inconsistencies that un-
dermine Equation (16).

The model presented in this letter removes all of these
limitations by making KCl condensation a dynamical
quantity dependent on atomic coordinates and calcu-
lated from physical principles. Since the potential is in
terms of atomic coordinates and KCl condensation, it
is transferable, phosphate-phosphate repulsion is auto-
matically included, and KCl condensation can respond
to conformational changes, making the model applica-
ble beyond the native basin. Consequently, this model
provides a description of the electrostatic features of the
full RNA free energy landscape, and allows calculation of
∆∆GMg2+ between conformational basins. The electro-
static description is in a dynamic context that can access
long time scales inaccessible with other techniques and
connect with experiments.

See Supplemental Material at [URL] for compari-
son with explicit solvent simulations, parameter sen-
sitivity analysis, further details of the model, and
references [46–54]. The parallel code used to sim-
ulate the potential is available for download at
http://smog.rice.edu/SBMextension.html.
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