
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological Surface States Originated Spin-Orbit Torques in
Bi_{2}Se_{3}

Yi Wang, Praveen Deorani, Karan Banerjee, Nikesh Koirala, Matthew Brahlek, Seongshik
Oh, and Hyunsoo Yang

Phys. Rev. Lett. 114, 257202 — Published 24 June 2015
DOI: 10.1103/PhysRevLett.114.257202

http://dx.doi.org/10.1103/PhysRevLett.114.257202


1 
 

Topological Surface States Originated Spin-Orbit Torques in Bi2Se3 

 
Yi Wang,1 Praveen Deorani,1 Karan Banerjee,1 Nikesh Koirala,2 Matthew Brahlek,2 

Seongshik Oh,2 and Hyunsoo Yang1,* 

 

1Department of Electrical and Computer Engineering, National University of Singapore, 
117576, Singapore 

2Department of Physics & Astronomy, Rutgers Center for Emergent Materials, Institute for 
Advanced Materials, Devices and Nanotechnology, The State University of New Jersey, New 

Jersey 08854, USA 

 

Three dimensional topological insulator bismuth selenide (Bi2Se3) is expected to possess 

strong spin-orbit coupling and spin-textured topological surface states, and thus exhibit a 

high charge to spin current conversion efficiency. We evaluate spin-orbit torques in 

Bi2Se3/Co40Fe40B20 devices at different temperatures by spin torque ferromagnetic resonance 

measurements. As temperature decreases, the spin-orbit torque ratio increases from ~ 0.047 

at 300 K to ~ 0.42 below 50 K. Moreover, we observe a significant out-of-plane torque at 

low temperatures. Detailed analysis indicates that the origin of the observed spin-orbit 

torques is topological surface states in Bi2Se3. Our results suggest that topological insulators 

with strong spin-orbit coupling could be promising candidates as highly efficient spin current 

sources for exploring next generation of spintronic applications. 
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    The realization of functional devices such as the non-volatile memories and spin logic 

applications is of key importance in spintronic research [1]. The functions of these magnetic 

devices require highly efficient magnetization manipulation in a ferromagnet (FM), which 

can be achieved by an external magnetic field or a spin polarized current by spin transfer 

torque (STT). Recent advances have demonstrated that pure spin currents resulting from 

charge currents via spin-orbit coupling in heavy metals, such as Pt [2-7], Ta [8-10], and W 

[11], can produce strong spin-orbit torques on the adjacent magnetic layers. The reported 

amplitude of spin Hall angles (i.e. efficiency of spin-orbit torques) in Pt and Ta is in the range 

of ~ 0.012 to ~ 0.15, and in W is ~ 0.33. The exploration for new materials exhibiting new 

physics and possessing an even higher conversion efficiency between the charge current 

density (Jc) and spin current density (Js) is crucial to exploit next generation spintronic 

devices. 

The three dimensional (3D) topological insulators (TI) are a new class of quantum state 

of materials that have an insulating bulk and spin-momentum-locked metallic surface states 

[12-14]. They exhibit strong spin-orbit coupling and are expected to show a high charge to 

spin current conversion efficiency. So far, by extensively employing angle-resolved 

photoemission spectroscopy (ARPES) and spin-resolved ARPES, the Dirac cones and the 

helical spin polarized topological surface states (TSS) have been observed and the 

topological nature has been confirmed in TIs [15,16]. The surface state dominant conduction 

has also been confirmed by thickness dependent transport measurements in Bi2Se3 [17]. 

The TSS in TI is immune to the nonmagnetic impurities due to the time reversal 

symmetry protection. Although a gap opening in the TSS dispersion was reported in Bi2Se3 
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doped with Fe in the bulk [18], most recently reports have confirmed that the TSS is intact in 

Bi2Se3 covered with Fe [19,20] or Co [21] with in-plane magnetic anisotropy. The spin 

dependent transport is known to be significant near the Fermi level in the Bi2Se3 surface 

states. However, limited spin dependent transport experiments have been focused on TI/FM 

heterostructures. Only recently, spin-orbit effects have been reported by spin pumping 

measurements [22-24] and magnetoresistance measurements [25,26]. Direct charge current 

induced spin-orbit torque on the FM layer has been demonstrated by spin torque 

ferromagnetic resonance (ST-FMR) measurement only at room temperature [27] and 

magnetization switching at cryogenic temperature [28]. It is known that for Bi2Se3 the bulk 

channel provides an inevitable contribution to transport at room temperature and may 

diminish the signals of spin-orbit torques arising from surface states. At low temperatures, 

however, the surface contribution should become significant [17], and spin-orbit torques in 

TI/FM heterostructures should be enhanced [28]. 

In this work, we adopt extensively studied Bi2Se3 as the TI layer and investigate the 

temperature dependence of charge-spin conversion efficiency, spin-orbit torque ratio (θ|| = 

Js/Jc), by the ST-FMR technique in Bi2Se3/Co40Fe40B20 heterostructures. In this structure, the 

spin currents generated from charge currents flowing in Bi2Se3 are injected into 

ferromagnetic Co40Fe40B20 layer and exert torques on it. It must be pointed out that the 

spin-orbit torques could be attributed to either the spin Hall effect (SHE) in the Bi2Se3 bulk, 

Rashba-split states at the interface [29-31], or Bi2Se3 topological surface states [23,27,28,31]. 

We find that θ|| drastically increases when the temperature decreases to ~ 50 K. As the 

temperature decreases furthermore, θ|| reaches up to ~ 0.42, which is ~ 10 times larger than 
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that at 300 K. In addition, a significant out-of-plane torque is extracted at low temperatures. 

We argue that our observations could be correlated with the TSS in our Bi2Se3/Co40Fe40B20 

heterostructures. 

20 quintuple layer (QL, 1 QL ≈ 1 nm) of Bi2Se3 films are grown on Al2O3 (0001) 

substrates using a custom designed SVTA MOSV-2 molecular beam epitaxy (MBE) system 

with a base pressure < 3 × 10-10 Torr. The detailed procedures for Bi2Se3 thin film growth can 

be found in previous reports [17,32]. The temperature dependent resistivity of Bi2Se3 film is 

measured by four probe method. Figure 1(a) shows a typical characteristic of Bi2Se3 that the 

sheet resistivity decreases as temperature decreases and then saturates at temperature < 30 K 

[17,33]. High resistivity Co40Fe40B20 (CFB) is chosen as the FM layer in order to minimize 

the current shutting effect thru the FM layer. We have prepared five Bi2Se3/CFB (t) samples 

(thickness t = 1.5, 2, 3, 4 and 5 nm) and measured their magnetization response as a function 

of external magnetic field as plotted in Fig. 1(b). From the inset of Fig. 1(b), the CFB dead 

layer in Bi2Se3/CFB samples is estimated to be 1.36 nm, similar to a recent report in which 

the Co dead layer at the interface of Bi2Se3/Co is ~ 1.2 nm [34]. 

The ST-FMR devices are fabricated by the following process. First, a 5 nm CFB layer is 

sputtered onto the Bi2Se3 film at room temperature with a base pressure of 3×10-9 Torr 

followed by a MgO (1 nm)/SiO2 (3 nm) capping layer to prevent CFB from oxidation. Then 

the film is patterned into rectangular shaped microstrips (dotted blue line) with dimensions of 

L (130 µm) × W (10 − 20 µm) by photolithography and Ar ion milling as shown in Fig. 2(a). 

In the next step, coplanar waveguides (CPWs) are fabricated. Different gaps (10 − 55 µm) 

between ground (G) and signal (S) electrodes are designed to tune the device impedance ~ 50 
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Ω. A radio frequency (RF) current (Irf) with frequencies from 7 to 10 GHz and a nominal 

power of 15 dBm from a signal generator (SG, Agilent E8257D) is applied to the 

Bi2Se3/CFB bilayer via a bias-tee, and the ST-FMR signal (Vmix) is detected simultaneously 

by a lock-in amplifier. An in-plane external magnetic field (Hext) is applied at a fixed angle 

(θH) of 35º with respect to the microstrip length direction [6]. We present the data from three 

different devices, denoted as D1, D2 and D3. 

Figure 2(b) shows the measured ST-FMR signals from D1 at different temperatures 

ranging from 20 to 300 K. Vmix can be fitted by a sum of symmetric and antisymmetric 

Lorentzian functions, mix s sym ext a asym ext( ) ( )V V F H V F H= + [3,6,27]. From fitting, the symmetric 

component Vs (corresponding to in-plane torque τ|| on CFB) and antisymmetric component Va 

(corresponding to total out-of-plane torque τ⊥) can be determined, simultaneously. 

The spin-orbit torque ratio from ST-FMR measurements can be characterized by two 

methods. One is to obtain θ|| from the analysis of Vs/Va via 

1 2
s a 0 s eff ext( / )( / )[1+(4 / )] /V V e M td M Hθ μ π=  [3], where t and d represent the thickness of the 

CFB and Bi2Se3 layer, respectively. Ms is the saturation magnetization of CFB and Meff is the 

effective magnetization. This method (denoted as ‘by Vs/Va’ hereafter) is to date widely used 

in ST-FMR measurements of heavy metals Pt (or Ta)/FM bilayers [3,6,8]. However, one 

assumption of this method is that the Va is only attributed to the Oersted field induced 

out-of-plane torque. However, in the case of a TI, the TSS in TI and/or Rashba-split states at 

the interface could also contribute to Va, therefore, we cannot estimate the actual θ|| value by 

Vs/Va. On the other hand, the second method can avoid such an issue by analyzing only the 

symmetric component Vs (denoted as ‘by Vs only’ hereafter) using the following equations:
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rf H
sym ext

H
s

1 ( )
4

I cos dR F H
d

V γ θ τ
θ

= −
Δ

, s s s/ /J E M t Eσ τ= = , and s /θ σ σ=  [6,27], where Irf 

is the RF current flowing through the device, H/dR dθ  is the angular dependent 

magnetoresistance at θH = 35°, Δ is the linewidth of ST-FMR signal, Fsym (Hext) is a 

symmetric Lorentzian, τ|| is the in-plane spin-orbit torque on unit CFB moment at θH = 0°, σs 

is the Bi2Se3 spin Hall conductivity, σ is the Bi2Se3 conductivity, and E is the microwave 

field across the device. The second method avoids the possible contamination to θ|| arising 

from Va, therefore we can extract the θ|| values in Bi2Se3 by analyzing only Vs. At the same 

time, the total out-of-plane torque τ⊥ can be derived by using 

1 2
rf H 0 eff ext

asym ext
H

a
[1 ( / )] ( )

4

/I cos dR M H F
d

V Hγ θ μτ
θ ⊥= +−

Δ
 [27], where Fasym (Hext) is an 

antisymmetric Lorentzian. 

Figure 3(a-b) show the τ|| and τ⊥ as functions of temperature, respectively, using the 2nd 

method. Here, the τ|| (τ⊥) represents the mean value for different RF frequencies. At 300 K, 

the τ|| is ~ 0.43 Oe for D1 (~ 0.84 Oe for D2 and ~ 0.48 Oe for D3). As the temperature 

decreases from 300 to 100 K, τ|| for all three devices gradually increases. At ~ 50 K, τ|| shows 

a steep increase and finally reaches ~ 5.25 Oe for D1 (~ 4.11 Oe for D2 and ~ 2.26 Oe for 

D3), which is ~ 10 times larger than that at 300 K. It is noteworthy that the observed drastic 

temperature dependent behavior of τ|| is different from the recently reported results in heavy 

metals such as Ta [10,35] as well as Pt [6,36,37], where the damping-like torque (equivalent 

to τ|| here), often argued to arise mainly from the SHE, shows a weak temperature 

dependence. This difference indicates the SHE mechanism may not account for the observed 

τ|| in our Bi2Se3/CFB. Moreover, the τ⊥ shows a similar temperature dependent behavior as τ|| 



7 
 

shown in Fig. 3(b). It is worth noting that the difference in τ|| (and τ⊥) among D1, D2 and D3 

can be attributed to the slight variation of the Bi2Se3/CFB interface during the fabrication 

process considering recent challenges in TI film growth and device fabrication. However, a 

qualitatively similar temperature dependence of torques is observed in all devices. 

The θ|| values as a function of temperature determined by above two methods have been 

shown in Fig. 3(c). From analysis by Vs only, θ|| is ~ 0.047 for D1 (~ 0.113 for D2 and ~ 

0.072 for D3) at 300 K, and increases to ~ 0.158 for D1 (~ 0.225 for D2 and ~ 0.149 for D3) 

as temperature decreases to 100 K. In this temperature range (100 - 300 K), θ|| has similar 

amplitudes as the spin Hall angle in heavy metals such as Pt, Ta, and W [3,8,11,42-44]. 

However, θ|| increases sharply as temperature decreases to ~ 50 K and reaches maximum 

values of ~ 0.42 for D1 (~ 0.44 for D2 and ~ 0.30 for D3) at lower temperatures, respectively. 

Remarkably, θ|| increases ~ 10 times compared to that at 300 K for D1. Similarly, from the 

analysis by Vs/Va, θ|| also shows an abrupt increase as temperature decreases to ~ 50 K in Fig. 

3(c). It is worth noting that we use the effective CFB thickness of t = 3.64 nm due to the dead 

layer for θ|| estimation by Vs/Va at different temperatures. Interestingly, as shown in Fig. 3(d), 

the ratio of [θ|| (by Vs only) � θ|| (by Vs/Va)]/θ|| (by Vs/Va) obtained by two different methods 

increases as temperature decreases and becomes more significant below ~ 50 K, as discussed 

later. 

In the context of spin Hall mechanism, the spin Hall angle (θsh) is found to be almost 

independent of temperature from Pt [6,36], Ta [45], Cu99.5Bi0.5, and Ag99Bi1 [46], which is 

attributed to the extrinsic mechanisms. In some cases, θsh shows a gradual increase as the 

temperature decreases, which behaves as a typical intrinsic mechanism based on the 



8 
 

degeneracy of d-orbits by spin-orbit coupling [47,48]. In contrast, in our Bi2Se3/CFB, the 

spin-orbit torque ratio (θ||) shows an abrupt and nonlinear increase as temperature decreases, 

especially below ~ 50 K. Therefore, the SHE from the Bi2Se3 bulk is probably not the 

dominant mechanism for our observation of temperature dependent spin-orbit torque (ratio) 

in Bi2Se3/CFB. From the measured ST-FMR signals as shown in Fig. 2(b), we also find that 

the Rashba-split state at the Bi2Se3/CFB interface is not the main mechanism for our 

observations, since the Rashba-split states lead to opposite direction (and sign) of charge 

current-induced spin polarization (and θ||) on the basis of the spin structure [27,31]. Instead, 

we ascertain that the direction of in-plane spin polarization to the electron momentum in our 

Bi2Se3/CFB is consistent with expectations of the TSS of TIs (spin-momentum locking) 

[12-14,27,31,37]. From further analysis [37], we have found that in our devices a large 

portion of the charge current flows through the TSS in Bi2Se3. The effective θ|| attributed to 

only TSS is in the range from ~ 1.62 ± 0.18 to ~ 2.1 ± 0.39. 

As mentioned before, the temperature dependent θ|| obtained from the above two 

methods shown in Fig. 3(c) should not show any difference, if Va is attributed to only the 

charge current induced Oersted field. Therefore, the observed difference implies the 

existence of other contributions to Va (i.e. to τ⊥). For the Bi2Se3/CFB system, the difference 

can be attributed to the TSS in Bi2Se3 [23,27,28,31] and/or Rashba-split states at the 

Bi2Se3/CFB interface [29-31]. We analyze Δτ = τ⊥ − τOe as the other contributions to the 

out-of-plane torque, where τ⊥ is the total out-of-plane torque as shown in Fig. 3(b), and τOe is 

a partial out-of-plane torque from charge current (flowing in Bi2Se3) induced Oersted field. 

By using the measured θ|| by Vs only, we can deduce τOe and thus Δτ by 
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1 2
s a 0 s eff ext( / )( / )[1+(4 / )] /V V e M td M Hθ μ π∗= , and 

1 2
rf H 0 eff ext

Oe asy e t
H

a m x
[1 ( / )] ( )

4

/I cos dR M H F H
d

V γ θ μτ
θ

∗ +−
Δ

=  [3,27], where Va
∗ is the 

equivalent antisymmetric component only due to the current induced Oersted field (τOe). As 

shown in Fig. 4(a), the out-of-plane torque (Δτ) in all three devices becomes much larger at 

low temperatures < 50 K, compared to the Δτ at high temperatures (100 – 300 K). 

Consequently, we can obtain the out-of-plane spin-orbit torque ratio (θ⊥) as a function of 

temperature by using the same method by which we deduce θ|| from τ|| above. As shown in 

Fig. 4(b), we find that θ⊥ in all three devices also becomes more significant at low 

temperatures (< 50 K). More interestingly, the θ⊥ almost has the same order of magnitude 

compared to θ||. 

We now discuss the origin of the out-of-plane torque. As has been reported recently, a 

Rashba-split surface state in two dimensional electron gas (2DEG) coexists with TSS in the 

Bi2Se3 surface due to the band bending and structural inversion asymmetry [29,30,49-52]. 

The Rashba effective magnetic field can be written as T R / (z )ˆH kα= ×  [49-51], where ẑ  

is a unit vector normal to film plane, k is the average electron Fermi wavevector, and αR is a 

characteristic parameter of the strength of Rashba splitting in 2DEG. Since the electron 

Fermi wavevector can be assumed to show a weak temperature dependence and the αR 

decrease as temperature decreases in a typical 2DEG [53,54], HT is expected to decrease as 

temperature decreases in these semiconductor systems. In addition, the similar temperature 

dependent behavior of HT has been recently reported in Ta/CoFeB heterostructures, where HT 

decreases and eventually almost reaches to zero at low temperatures [10,35]. However, the 

observed Δτ (equivalent to HT) in our Bi2Se3/CFB presents the opposite temperature 
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dependent behavior which is not in line with the reports about Rashba induced torques. 

Therefore, we conclude that the Rashba-split surface state in 2DEG of Bi2Se3 is not the main 

mechanism for the out-of-plane torque (Δτ).  

On the other hand, a possible out-of-plane spin polarization in the TSS has been 

theoretically predicted [55,56] and experimentally observed in Bi2Se3 [57,58], which is 

attributed to the hexagonal warping effect in the Fermi surface [55,59]. This out-of-plane 

spin polarization in the TSS can account for the observed Δτ especially in the low 

temperature range (< 50 K) and the Δτ adds to the τOe [27,31]. Moreover, as shown in Fig. 3(a) 

and 4(a), the out-of-plane torque (Δτ) has the same order of magnitude comparable to 

in-plane torque (τ||) below 50 K (Δτ/τ|| ~ 60%) [37], which is in agreement with the behavior 

of hexagonal TSS in TI [55,56]. With the analysis from different aspects, our findings 

especially in the low temperature range (< 50 K) indicate a TSS origin of spin-orbit torques 

in Bi2Se3/CFB. 

In summary, we have studied the temperature dependence of spin-orbit torques in 

Bi2Se3/CoFeB heterostructures. As temperature decreases, the spin-orbit torque ratio 

increases drastically and eventually reaches a maximum value of ~ 0.42, which is almost 10 

times larger than that at 300 K. A significant out-of-plane torque (Δτ), in addition to charge 

current induced Oersted field torque (τOe), can be observed below 50 K. The observed 

spin-orbit torques are attributed to the topological surface states in Bi2Se3. Our results 

suggest that topological insulators with strong spin-orbit coupling and spin-momentum 

locking are promising spin current sources for next generation of spintronic devices. 
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Figure captions  
 

FIG. 1. (a) Temperature dependent sheet resistivity of Bi2Se3 films (20 QL). (b) The 

magnetization versus field (H) for Bi2Se3 (20 QL)/CFB (t) (nominal thickness t =1.5, 2, 3, 4 

and 5 nm) at room temperature. The inset shows the magnetization per unit area versus CFB 

thickness. 

 

FIG. 2. (a) The schematic diagram of the ST-FMR measurement, illustrating a bias-tee, 

lock-in amplifier, RF signal generator (SG), and ST-FMR device with a Bi2Se3/CFB (5 nm). 

Micro-strip is denoted by a dashed blue rectangle. (b) The measured ST-FMR signals from a 

Bi2Se3/CFB (5 nm) device (D1) at different temperatures.  

 

FIG. 3. Temperature dependence of (a) τ||, (b) τ⊥, (c) θ||, and (d) [θ|| (by Vs only) � θ|| (by 

Vs/Va)]/[θ|| (by Vs/Va)] in Bi2Se3/CFB (5 nm) for D1, D2, and D3. The θ|| is analyzed by two 

different methods, by ‘Vs only’ and by ‘Vs/Va’. 

 

FIG. 4. (a) Temperature dependent out-of-plane torque (Δτ = τ⊥ − τOe) and (b) out-of-plane 

torque ratio (θ⊥) in Bi2Se3/CFB (5 nm) devices. 
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FIG. 2 
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FIG. 3 
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FIG. 4 
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