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Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation,
feature a unique valley transport regime. Topological valley currents in such materials are dominated
by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The
system ground state hosts dissipationless persistent valley currents existing even when topologically
protected edge modes are absent. Valley currents induced by an external bias are characterized by
a quantized half-integer valley Hall conductivity. The under-gap currents dominate magnetization
and the charge Hall effect in a light-induced valley-polarized state.

Bloch bands in materials with broken inversion sym-
metry can feature Berry curvature, an intrinsic physical
field which dramatically impacts carrier transport[1, 2].
The key manifestation of Berry curvature is the anoma-
lous Hall effect (AHE), arising in the absence of mag-
netic field due to topological currents flowing in system
bulk transversely to the applied electric field[3, 4]. Of
high current interest are Dirac materials with several
valleys, such as graphene and transition metal dichalco-
genide monolayers[5, 6]. Topological currents in these
systems have opposite signs in different valleys and, if
intervalley scattering is weak, can give rise to long-range
charge-neutral valley currents. Such currents have been
observed recently in graphene/hBN superlattices[7]. Al-
ternatively, if valley polarization is induced by light with
nonzero helicity, a charge Hall effect is observed[8].

Topological effects are particularly striking in gapped
systems where Chern bands support topologically pro-
tected edge modes and quantized transport [9–12]. How-
ever, existing Valley Hall materials[5–8] lie squarely out-
side this paradigm. First, gapless edge states in these
materials are not enforced by topology or symmetry and
may thus be absent. Second, even when present, these
states are not protected against backscattering and local-
ization. Näıvely, the lack of edge transport would lead
one to conclude that topological currents cease to exist.
If true, this would imply that the key manifestations,
such as the valley Hall conductivity and orbital magne-
tization, vanish in the gapped state[6].

Here we argue that the opposite is true: the absence
of conducting edge modes does not present an obstacle
since valley currents can be transmitted by bulk states
beneath the gap. As we will see, rather than being van-
ishingly small, valley currents peak in the gapped state.
Further, we will argue that such currents are of a per-
sistent nature, i.e. they represent a ground state prop-
erty, an integral part of thermodynamic equilibrium. In
a valley-polarized state, the under-gap currents dominate
magnetization and the charge Hall effect.

The effects due to under-gap states should be con-
trasted with those due to deep-lying states which govern
field-theoretic anomalies[13, 14]. The anomaly-related

FIG. 1: Persistent valley currents inside and outside pn junc-
tion. The currents arise from side jumps of band carriers
just beneath and just above the gap upon reflection from the
gapped region, as illustrated by trajectories in Fig.2. The
under-gap and over-gap currents (red and blue regions) flow
in opposite directions and fully cancel deep in the Fermi sea.
The two contributions are maximally uncompensated inside
the region −x0 < x < x0, giving a maximum current value of

j = e2

2h
E per valley, where E is the built-in electric field.

currents can lead to interesting transport effects such
as the chiral transport in Weyl semimetals[15, 16] and
in 3He[17]. Importantly, the deep-lying states in our sys-
tem obey inversion symmetry and thus do not contribute
to valley transport. Indeed, a weak gap-opening pertur-
bation which breaks inversion symmetry at energies near
the Dirac point has little impact on the deep-lying states.
This is quite unlike the anomaly situation where symme-
try is broken by regularization at the bandwidth scale
but remains intact at lower energies. The regime stud-
ied here, where valley currents are dominated by states
just beneath the gap, is unique for systems with a weak
inversion-breaking perturbation. A similar behavior is
expected in systems such as graphene bilayers in a trans-
verse E field and twisted graphene bilayers.
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To gain insight into these delicate issues, we consider a
model edge-free gapped system: a pn junction in gapped
graphene created by a built-in electric field, see Fig.1.
This system features an interesting spatial distribution
of valley currents which peak in the gapped pn region
−x0 < x < x0. The origin of such (perhaps counterintu-
itive) behavior is as follows. Valley currents are due to
the states just above and just below the gap and, cru-
cially, are of opposite sign for the two groups of states.
These states are either both depleted of carriers or both
filled away from the gapped region, giving contributions
that nearly cancel. This produces a net current decreas-
ing to zero away from the pn region, see Eq.(14). Within
the pn region these contributions are maximally imbal-
anced, creating a maximum current. Further, the current

is quantized to a half-integer value per valley, j = e2

2hE,
where E is the built-in field.

Our analysis, which is microscopic and explicit, applies
equally well to a spatially uniform gapped system under
bias (and with no gate-induced built-in fields), predict-

ing a quantized Valley Hall effect with σxy = e2

2h per
valley. In terms of the arrangement shown in Fig.1 this
corresponds to system sizes L smaller than the gapped
region width 2x0 = Eg/eE, i.e. weak bias voltage
V = EL � Eg/e. Since valley currents in this case are
transmitted by the under-gap states in the system bulk,
they are nondissipative. Below we also discuss valley edge
currents resulting from the side jumps of the under-gap
states upon reflection from system boundary, see Fig.3.
Together with bulk currents, such edge currents ensure
the valley flow continuity. These currents circulate along
the edge, producing orbital magnetization in the system
ground state, see Eq.(15). We note parenthetically that
σxy values become unquantized by inter-valley scatter-
ing by disorder. However, given the exceptionally long
mean free paths in currently studied graphene systems,
we expect our ballistic model to provide a good approx-
imation.

We model carriers in each valley as 2+1 massive Dirac
particle in the presence of a static uniform electric field
which defines a pn junction:

H =

(
∆ vp−
vp+ −∆

)
− eEx, p± = p1 ± ip2, (1)

where p1,2 denote momentum components px,y. The sys-
tem ground state is a Fermi sea with a density gradient
imposed by the E field, n-doped on one side and p-doped
on the other side of a gapped region, see Fig.1. Simple
as it is, the above Hamiltonian captures all essential ele-
ments of interest: tunneling through the gapped region,
AHE in surrounding regions, and their interplay.

Our approach relies on a mapping onto a fundamental
problem in quantum dynamics: a pair of quantum levels
driven through an avoided level crossing. The Landau-
Zener (LZ) problem describing these transitions admits

FIG. 2: a) The under-gap and over-gap trajectories near the
gapped region, Eq.(13). Skewed Hall-like motion gives rise to
side jumps. Shown are normally incident trajectories (red for
electrons, blue for holes). The opposite-flowing under-gap and
over-gap currents partially cancel when summed over all filled
states, producing net currents flowing in the same direction
in the p and n regions, with the maximum current attained
in the middle region −x0 < x < x0, see Eq.(14) and Fig.1.
b) Spin-1/2 interpretation of side jumps. Magnetization m(t)
evolves adiabatically in a slowly varying field b(t) that sweeps
a plane perpendicular to n, see Eq.(7). Magnetization tracks
the field but lags slightly behind, rotating out of the plane and
acquiring a component parallel to n, see Eq.(11). So does the
velocity vector which is aligned with m(t).

an exact solution[18, 19]. The LZ theory provides a very
general method that accounts for the AHE transport
both outside and inside the gapped pn region, as well as
for tunneling through this region. Below we discuss the
relation between our LZ approach and the conventional
quasiclassical approach based on the adiabatic theorem
and Berry phase[1, 2]. Since the LZ approach is not re-
stricted to the adiabatic limit, it gives a full account of
non-adiabatic effects associated with tunneling through
the gapped region in our transport problem. Such effects,
which are naturally described in the LZ framework, are
not accounted for by the quasiclassical approach.

Mapping of Eq.(1) onto the LZ problem is accom-
plished in two steps. We first note that in the momen-
tum representation εψ = Hψ is a first-order differential
equation, since the only term containing a derivative is
−eEx = eEih̄∂p1

. We can thus rewrite our equation
as a time-dependent Schroedinger equation for a 2 × 2
Hamiltonian, with t = p1/eE playing the role of time:

ih̄∂tψ(t) = H̃(t)ψ(t), H̃(t) = βtσ1 + vp2σ2 + ∆σ3, (2)

where we set ε = 0 without loss of generality and defined
β = veE. Next, by interchanging spin components via
σ1 ↔ σ3, σ2 → −σ2 we bring H̃ to the canonical LZ form

H̃(t) =

(
βt ∆p

∆∗p −βt

)
, ∆p = ∆ + ivp, (3)

where from now on we use p instead of p2 for brevity.
Time evolution in Eq.(2) defines a unitary S-matrix

which takes its simplest form in the adiabatic basis of in-
stantaneous eigenstates of H̃(t). These states correspond
to a particle moving in a classically allowed region, p or
n, without tunneling through the gapped region. Tun-
neling is thus described by the LZ transitions between
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different adiabatic states. Written in the adiabatic basis,
the S-matrix is of the form

S =

( √
q −

√
1− qeiϕ√

1− qe−iϕ √
q

)
, q = e−2πδ, (4)

where δ = |∆p|2/2βh̄. Here the phase ϕ is given by[20]

ϕ = π/4 + arg Γ(1− iδ) + δ(ln δ − 1) + arg ∆p (5)

with Γ(z) the Gamma function. The non-adiabatic and
adiabatic LZ transitions, taking place with the proba-
bilities q and 1 − q, correspond to particle transmission
through the gapped region and reflection from it. The
evolution is adiabatic at small β, with the system track-
ing one of the instantaneous eigenstates of H̃(t) and non-
adiabatic transitions exponentially suppressed, q → 0.

The S-matrix exhibits features characteristic for the
skewed particle motion taking place in the AHE regime.
In particular, it predicts side jumps — particle transverse
displacement induced by its proximity to the pn region.
We evaluate the y displacement as 〈δy〉 = 〈ψ|ih̄∂p|ψ〉
with the expectation value taken over the left- and right-

incident states, |L〉 = S

(
1
0

)
, |R〉 = S

(
0
1

)
. We find

〈δy〉L,R = ±∂ϕ/∂p = ±`(1− q), ` = h̄v∆/|∆p|2, (6)

where only the last term of the phase in Eq.(5), which is
even in p, gives a contribution to the net valley current.
Interestingly, the result in Eq.(6) only depends on 1 − q
that corresponds to reflection, indicating that side jumps
occur only at reflection from the gapped region but not at
transmission through it. The side jump direction reverses
upon ∆ sign reversal. Valley K and K ′ contributions are
of opposite sign as expected for Valley Hall transport.

Encouraged by these observations, we proceed to con-
struct individual one-particle quantum states exhibiting
side jumps. Since Dirac particle velocity is expressed
through its spin, v = 1

ih̄ [x, H] = v(σ1, σ2), it will be
convenient to represent LZ dynamics as spin 1/2 evolu-
tion. The latter is described by the Bloch equation for
magnetization vector m(t) = 〈ψ(t)|s|ψ(t)〉, si = h̄

2σi,

∂tm = b(t)×m, b(t) =
2

h̄
(∆,−vp, βt) (7)

where the magnetic field b(t) orientation changes from
−z to +z over −∞ < t <∞.

We focus on the weak field regime eE � ∆/` = ∆2/h̄v.
In the LZ formulation (3) this corresponds to spin 1/2
evolving in a slowly changing magnetic field b(t) which
rotates in the plane perpendicular to the vector

n = (sinα, cosα, 0), tanα = vp/∆. (8)

Crucially, the adiabatic spin evolution in a rotating field
b(t) can generate a component of m (and thus of the ve-
locity) transverse to the rotation plane and thus pointing

along n. This happens because when the field rotates in
the plane perpendicular to n the spin tries to follow it but
is left slightly behind. Then, as a result of Bloch preces-
sion, the spin rotates out of the plane swept by b(t), see
Fig.2. This component is proportional to rotation speed,
i.e. is not exponentially small in the adiabatic limit.

Such a behavior, while somewhat counterintuitive, can
be understood as follows. We usually think of a spin
precessing in a strong but slowly changing magnetic field
is being “slaved to the field”. This is basically correct,
however the spin excursions away from the field direction
can be nonexponential due to the Berry curvature effects.
This is precisely the case in our problem.

It is convenient to use a (nonuniformly) rotating frame
in which the field b(t) has a frozen orientation. We
write |ψ(t)〉 = U(t)|ψ′(t)〉 with the unitary transfor-
mation U(t) chosen so that the field b′(t) defined by
U−1(t) (b(t) · s)U(t) = b′(t) · s is directed along a fixed
axis. For the Hamiltonian in Eq.(3) the operator U(t)
with this property can be defined as a spin rotation

U(t) = e
i
h̄ θ(t)n·s, tan θ(t) = βt/|∆p|, (9)

where θ(t) is the angle between vectors b(t) and b(0) =
2
h̄ (∆,−vp, 0). In the rotated frame our equations read

ih̄∂t|ψ′(t)〉 =
(
b′(t) · s− ih̄U−1(t)U̇(t)

)
|ψ′(t)〉. (10)

The last term equals −ih̄U−1(t)U̇(t) = ∂θ(t)
∂t n · s giving

a spin Hamiltonian with an effective field b′(t) + ∂θ(t)
∂t n.

So far our analysis has been completely general, now
we specialize to an adiabatic evolution in which the spin
orientation tracks the field. In this case, when viewed in
our rotated frame, m(t) remains aligned with the vector

b′(t) + ∂θ(t)
∂t n at all times. Transforming back to the lab

frame, we conclude that m(t) tracks the field

b̃(t) = b(t) +
∂θ(t)

∂t
n (11)

which, because of the last term, has an additional y com-
ponent. Finally, since the velocity operator v = v(σ1, σ2)
expectation value is aligned with m, the velocity compo-
nents are easily evaluated as vx,y = vb̃x,y/|b̃| giving

vx(t) =
vβt

ε(t)
, vy(t) =

v2p

ε(t)
+

v∆β

2ε3(t)
, (12)

where ε(t) = ±
√
β2t2 + |∆p|2 with the plus/minus sign

describing p and n states. Here we normalized b̃(t) ap-
proximating |b̃(t)| ≈ |b(t)|. Trajectories are readily ob-
tained by integrating velocity, giving

x(t) =
vε(t)

β
, y(t) =

v2p

|∆p|
ln
ε(t) + βt

|∆p|
+

v∆βt

2|∆p|2ε(t)
(13)
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(here we suppressed integration constants). The last
term in Eqs.(12),(13) originates from Berry curvature,
giving rise to side jumps, see Fig.2. The net side jump
value is δy =

∫∞
−∞ vy(t)dt = v∆/|∆p|2, which matches

the result found above.
These results are in accord with the classical equations

of motion augmented with the anomalous velocity term
describing the nonclassical Berry’s “Lorentz force:”[1, 2]

ṗ = eE, ẋ = ∇pε±(p) + Ω(p)× ṗ, Ω(p) =
v2∆

2ε3
±(p)

,

where ε±(p) = ±(v2p2 + ∆2)1/2 is particle dispersion.
Current density, found by summing the velocity contri-
butions of all states in the Fermi sea, is

j(x) =

{
j0, |x| < x0

j0x0/|x|, |x| > x0
, j0 =

e2

2h
E (14)

per valley. The current peaks in the gapped region,
falling off inversely with distance outside this region, as
shown in Fig.1a. An identical result is obtained by in-
tegrating the velocity in Eq.(12) over allowed values of
p. As discussed above, this behavior originates micro-
scopically from the contribution of the under-gap tra-
jectories side jumps dominating in the gapped region,
however being partially canceled by the over-gap trajec-
tories contribution outside this region. Interestingly, the
linear dependence j0 vs. E translates into a universal,
E-independent net current flowing through the gapped
region, I|x|<x0

= e∆/h̄.
Dissipationless currents in a spatially uniform gapped

system can also be created by a voltage bias. The E-
independent side-jump values δy ∼ h̄v/∆ [Eq.(13) last
term] allow us to treat a gapped system under a weak
bias (and no gate-induced built-in fields) using the above
model, as long as eEbias � ∆/L where L is system size.
Our analysis then predicts a universal valley Hall con-

ductivity σxy = e2

2h per valley. Since valley currents in
this case are transmitted solely by under-gap states in
the system bulk, they are nondissipative.

Another interesting phenomenon is persistent edge cur-
rents in a spatially uniform unbiased gapped system.
These currents arise due to side jumps of the under-gap
states scattered off system edges, see Fig.3. Circulat-
ing along the edge, the currents produce orbital magne-
tization in the system ground state. Valley K and K ′

contributions are of opposite sign, giving zero net mag-
netization in thermodynamic equilibrium. Finite mag-
netization can be created by using light of a particular
helicity to polarize valleys (as in the Valley Hall effect
measurements[6, 8]). We analyze total magnetic moment

M =

∫
d2r

2c
r×j(r) ≈ Aγe∆

h̄c

∑
p,i,±

Ω(p)ni,F (ε±(p)), (15)

where A is system area, ni,F are the Fermi functions with
i labeling valleys, and γ ∼ 1 a numerical constant ac-
counting for edge current suppression due to intervalley

FIG. 3: a) Persistent valley currents in a spatially uniform
gapped system with the Fermi level inside the gap. Currents
arise due to side jumps of the under-gap trajectories bouncing
off the system boundary. Persistent currents circulate along
the edge, giving rise to a constant magnetization per valley,
Eq.(15). b) Orbital magnetization, Eq.(15), as a function of
chemical potential. Magnetization peaks for the Fermi level
inside the gap and decreases at large detuning as a result of
compensation from over-gap and under-gap contributions.

scattering induced by edge roughness. This estimate was
obtained from considering current I circulating around
the sample with the typical side-jump value h̄v/∆ found
above (in the narrow p-n junction limit). The depen-
dence on the Fermi level arises from summing the contri-
butions of all filled states. Magnetization (magnetic mo-
ment per area) attains maximum value when the Fermi
level lies inside the gap, see Fig.3. We estimate the max-
imum value per each valley and spin projection to be

m = M/A ≈ e∆/2h̄c = 12.8× (∆[eV])µB/(nm)2, (16)

where we have taken the maximum value of Berry flux
= 1/2 that occurs in the gap (for a single valley), and
used γ = 1. Here µB is the Bohr magneton. For
G/hBN, gap sizes can be as large as several tens of meV
[7], yielding values of m of >∼ 0.13µB/(nm)2; larger gap
sizes ∆ >∼ 1 eV in transition metal dichalcogenides will
yield correspondingly larger values of magnetization. In
2D systems, magnetization can be measured with torque
magnetometry techniques, allowing access to values as
low as 0.1µB/2D u.c. [21].

Summing up, topological valley currents in gapped ma-
terials are transmitted by under-gap bulk states rather
than by edge modes. The lack of an edge contribution,
which is not protected by topology or symmetry, does not
present an obstacle since the under-gap currents can give
rise to dissipationless transport in the gapped state. The
under-gap currents generate persistent (magnetization)
currents in the thermodynamic ground state, flowing in
the system bulk and along boundaries. We predict that
the key manifestations and observables, such as the Val-
ley Hall conductivity and orbital magnetization in valley-
polarized systems, reach maximum value in the gapped
state. The requirements for observing dissipationless val-
ley transport can be met under realistic conditions.
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