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Gökçe Başar,1, ∗ Aleksey Cherman,2, † David A. McGady,3, ‡ and Masahito Yamazaki4, 5, §

1Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
2Fine Theoretical Physics Institute, Department of Physics,

University of Minnesota, Minnesota, MN 55455, USA
3Department of Physics, Jadwin Hall Princeton University Princeton, NJ 08544, USA.
4Institute for Advanced Study, School of Natural Sciences, Princeton NJ 08540, USA

5Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8586, Japan

Four-dimensional asymptotically-free large N gauge theories compactified on S3
R × R have a

weakly-coupled confining regime when R is small compared to the strong scale. We compute the
vacuum energy of a variety of confining large N non-supersymmetric gauge theories in this calcu-
lable regime, where the vacuum energy can be thought of as the S3 Casimir energy. The N = ∞
renormalized vacuum energy turns out to vanish in the class of theories we have examined. This
matches an implication of a recently observed temperature-reflection symmetry of such systems.

Introduction—In typical quantum field theories
(QFTs) with a mass gap M0 > 0, the mass M of the
heaviest particle species sets the natural size of the vac-
uum energy V ∼M . The Standard Model (SM) contains
a variety of gapped sectors, and the electron contribution
to the vacuum energy density O(m4

e) ∼ 6×10−2 MeV4 is
already much larger than the value ∼ 1×10−36 MeV4 in-
ferred from the accelerating expansion of the universe[1].
The apparent need to fine-tune V against M is the cos-
mological constant problem.

In gapped QFTs the only known mechanism which nat-
urally gives V = 0 is linearly realized supersymmetry
(SUSY). But if the SM is the low energy limit of a SUSY
QFT, SUSY must be broken at some scale µSUSY � me

(see e.g. [2]), and the cosmological constant problem re-
mains severe. This strongly motivates a search for other
mechanisms that would force V to vanish.

If a QFT has a finite number of particle species it
seems difficult to escape the conclusion that V ∼M , but
what sets the scale of V if there are an infinite number
of species with increasing masses[3]? This is the situ-
ation in weakly-coupled string theories and in confining
large N gauge theories, which are believed to have a dual
string description[4]. In this paper we compute the vac-
uum energy of a variety of non-supersymmetric SU(N)
gauge theories at N =∞, including pure Yang-Mills the-
ory. The calculations are done using a compactification
of spacetime to S3

R×S1
β , where these theories develop an

analytically tractable confining regime[5] if the S3 radius
R is much smaller than the strong scale 1/Λ, and if the
temperature T = 1/β is below a critical value. In this
regime V is simply the Casimir energy, EC , of the theory
on S3×R. It was recently observed[6] that temperature-
reflection (T -reflection) symmetry predicts that the vac-
uum energy associated with the N = ∞ spectrum of
these confining theories should vanish.

Our calculations confirm this prediction. Since the re-
sult holds in a variety of large N gauge theories, it seems
unlikely to be an accident. It is possible that confining
gauge theories have emergent symmetries in the large N

limit which force V to vanish.
T -reflection—For QFTs on S3

R × S1
β the spectrum of

single-particle excitations is discrete, and in our cases of
interest the partition function can be written as
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where V0 is the bare vacuum energy, V is the spatial
volume, and ω±n , d

±
n are the energies and degeneracies of

bosonic (+) and fermionic (-) states. We study theories
where ω±n only depends on the scale R. The sum in
the upper line is UV divergent and must be regulated
and renormalized to obtain a physical expression. The
renormalized contribution explicitly depends on R and
is the Casimir energy. In [6] we noted that one can also
formally define the quantity Z(−β) by sending β → −β
in (1):
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Of course, Z(−β) also has UV divergences, and requires
the same type of regularization and renormalization as
Z(β). With renormalized expressions for both Z(β) and
Z(−β) in hand it can be shown that there is a T -reflection
symmetry[6]

Z(β) = eiγZ(−β) (3)

where γ = −π Finite[
∑
n=1 d

+
n ] [7], provided that the R-

independent part of the vacuum energy from V0 is set
to zero. Hence (3) holds only if the renormalized vac-
uum energy V coincides with the Casimir energy EC =
1/2

∑
±,n d

±
nω
±
n . For instance, see e.g. [8], on S3

R × S1
β ,
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Eq. (3) holds for a real conformally-coupled scalar field
when V = 1/(240R) and γ = 0, while for an Abelian
vector field T -reflection holds with V = 11/(120R) and
γ = π.

Non-abelian gauge theories on S3
R × S1

β—We an-
alyze SU(N) gauge theories with nF adjoint Majorana
fermions and nS real adjoint scalars on S3

R × S1
β . For

moderate nF , nS , these theories are asymptotically free
with a strong scale Λ, and are weakly coupled if ΛR� 1.
Indeed, in the ΛR → 0 limit where we will work, the ’t
Hooft coupling λ goes to 0, and these theories develop a
conformal symmetry at the microscopic level. However,
no matter how small λ becomes, the Gauss law constraint
on the compact manifold S3 only allows color-singlet op-
erators to be part of the space of finite-energy states, and
these operators must include one or more color traces.

As explained in detail in [5] (see also [9, 10]) in the large
N limit such theories have at least two distinct phases.
In particular, there is a low temperature confining phase,
dominated by the dynamics of an infinite number of sta-
ble single-trace hadronic states, and a mass gap of order
1/R. The confined phase has a free energy scaling as N0

and unbroken center symmetry.
In this paper, we focus on the weakly-coupled large N

confining phase, since we wish to compute the vacuum
energy of the theory on S3 × R. The Casimir energy is
dictated by the energies and degeneracies of the states of
the theory, which are in turn encoded within the ther-
modynamic partition function, Z(β) = Tr e−βH . We
shall use the spectrum of states in the N = ∞ limit to
compute the Casimir energy. Before proceeding to the
vacuum energy computation, we review and expand on
the remarks in [6] concerning the T -reflection properties
of Z(β) in N =∞ confining gauge theories on S3 × S1.

In large N confining phases, the physical excitations
are created by single-trace operators which generate the
physical single-particle states. Hence the thermodynamic
partition function associated to the spectrum of excita-
tions on S3 × R is given by (1) with the spectral data
ω±n , d

±
n taken from the single-trace thermodynamic par-

tition function[5]

−ZST(β) =

∞∑
k=1

ϕ(k)

k
log
[
1− zV (xk)− nSzS(xk) (4)

+(−1)knF zF (xk)
]
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where ϕ(k) is the Euler totient function, x = e−β/R, y =
x1/2, states with even/odd labels n are bosons/fermions,
and

zS(x) =
x2 + x

(1− x)3
, zF (x) =

4x3/2

(1− x)3
, zV (x) =

6x2 − 2x3

(1− x)3

are the so-called single-letter partition functions for re-
spectively the conformally-coupled real scalar, Majorana
fermion and Maxwell vector fields on S3.

To relate this to (1), which includes contributions from
multi-particle states, recall that for bosonic systems with
integer-spaced levels we can write

− logZ(0)(β) =
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n=1

dn log(1− xn) =
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n=1
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k
xkn

=
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k
(5)

where ZSP(β) is the single-particle partition function,
with a similar final expression for a fermionic system.
Z(0)(β) is only a part of the expression (1) for Z(β), since
it leaves out the Casimir vacuum energy. Hence unless
the Casimir energy happens to be zero, Z(0)(β) will not
enjoy T -reflection symmetry. Indeed, for most QFTs,
Z(0)(β) is not T -reflection symmetric, and the Casimir
energy must be included in Z(β) to satisfy T -reflection,
as can be checked for a free scalar field theory on S3

R×S1
β .

Nevertheless, consider the N = ∞ confined-phase
gauge theory partition function without the vacuum en-
ergy contribution[5]:

ZG(β) := exp

[
−
∞∑
k=1

ZST(xk)

k

]
(6)

=

∞∏
n=1

1

1− zV (xk)− nSzS(xk) + (−1)knF zF (xk)

Since zS(1/x) = −zS(x), zF (1/x) = −zF (x), and 1 −
zV (1/x) = −[1− zV (x)], we see that

ZG(β) = eiπ/2ZG(−β) (7)

with the prefactor obtained from a zeta-function regular-
ization of (−1)

∑∞
n=1 1. So ZG(β) enjoys T -reflection sym-

metry. This is consistent with the general argument for
T -reflection symmetry after (1) only if the renormalized
Casimir vacuum energy of the N =∞ theory vanishes.

Vacuum energy—To check the T -reflection predic-
tion we calculate the Casimir vacuum energy EC

EC =
1

2

∞∑
n=1

dnωn (8)

with Rωn = n/2 and dn are drawn from (4). The sum is
divergent, and must be regularized and renormalized to
find the physical value of EC . In many QFTs the simplest
way to do this[11] is to observe that EC is encoded in the
behavior of the physical single particle partition function,
see e.g. [12], which for us is ZST, through

C[y] =

[
1

4R
y
d

dy
ZST(y2)

]
=

1

2

∞∑
n=1

dnωny
n (9)

where y = e−1/(µR), and µ is the UV cutoff. Normally, in
the simple class of theories we work with, which have no
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FIG. 1. (Color Online.) Structure of singularities (red dots) coming from the first 45 terms in (4) in the large N confining-phase

partition functions of gauge theories with adjoint matter on S3 × S1, in the complex plane for y = e−β/(2R). The blue curve is
an example of a path from y = 0 to y = 1 which does not pass through any singularities. Left: Yang Mills (nF = 0, nS = 0)
theory. Right: Gauge theory with nF = 1, nS = 2.

microscopic mass terms, EC would be given by the finite
part of C[y → 1], see e.g. [8, 13]. This amounts to defin-
ing EC via a natural analytic continuation, in the sense
that it involves a regularization that does not break any
of the symmetries of the theory (apart from conformal
symmetry, which is broken by any regulator). Indeed,
(9) can be viewed as a spectral heat kernel regulariza-
tion of EC , since it involves the damping factor e−ωn/µ,
with µ = 1/β playing the role of the UV cutoff, and tak-
ing the finite part of the expression amounts to using a
spectral zeta function regularization and renormalization
prescription as discussed in e.g. [13].

If we were dealing with a system where dn → q np

once n� 1 for some fixed p, q ∈ R+, then C[y] would be
well-defined for any y ∈ [0, 1), and we would expect to
find

C[y → 1] = c4R
3µ4 + c2Rµ

2 + EC +O(µ1) (10)

with c4, c2 6= 0, and the leading power of µ is tied to
the spacetime dimension d = 4. The µ4 divergence can
be cancelled by a standard ‘vacuum energy’ countert-
erm µ4

∫
d4x
√
g , since

∫
S3 d

3x ∼ R3, while the µ2 di-
vergence can be cancelled by a ‘gravitational constant’
counterterm, µ2

∫
d4x
√
gR, since the Ricci scalar cur-

vature R = 6/R2 for S3
R, see e.g. [13]. In our case,

however, the thermodynamic degeneracy factors dn from
(4) are associated with confining large N gauge theo-
ries, and it is known that dn grows exponentially with n,
dn ∼ p nq hn, n � 1 with p, q, h ∈ R+ and h > 1. This

is the famous Hagedorn scaling of the density of states.
Consequently, if we keep µ ∈ R+, ZST(µ) is only well-
defined for µ < µH . Physically, if the temperature is
increased past TH there is a Hagedorn instability, and a
consequent phase transition to a deconfined phase. So at
first glance it is not clear how to use (9) to compute EC
for confining large N theories.

To circumnavigate this roadblock, note that we do not
have to take the y → 1 limit of ZST along the real axis.
We can approach y = 1 along any smooth path in the
complex plane which does not go through any singulari-
ties. The singularities of ZST[y] are set by the roots of

p[y] = 1− zV (y2)± nF zF (y2)− nSzS(y2) (11)

If p[y] has a root yH ∈ [0, 1], then the logarithms in
(4) (which depend on p[yk]) become singular at y =

yH , y
1/2
H , y

1/3
H . . ., and (4) ceases to be well-defined for y ≥

yH . Such roots are present for any integer nF , nS ≥ 0,
which is the origin of the Hagedorn instability. Figure 1
shows the location of the singularities of the Yang-Mills
(left) and Nf = 1, Ns = 2 (right) single-trace partition
functions as red dots, with the blue curve illustrating
an example of one of the many approach trajectories to
y = 1 along which there are no singularities. Armed
with this observation, we can evaluate EC numerically
or analytically.

Analytic computation. The first step to isolate the
part that diverges as y → 1 from the rest in y dZST /dy
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in (9);

y
∂

∂y
log
[
1− zV (y2m) + nF (−1)mzF (y2m)− nSzS(y2m))

]
=

2my2m
(
3y4m − 2(nS + 3)y2m + 6nF (−y)m − nS − 3

)
y6m − (3 + nS)y4m + 4nF (−y)3m − (3 + nS)y2m + 1

+
6my2m

1− y2m
= 3m+

6my2m

1− y2m
, (12)

where in the last step we substituted y = 1 in the finite
term. This substitution should be understood as a limit
in the complex plane that avoids any singularities along
its path, as described above. By using Eqs. (4), (9), and
(12) we obtain the formally divergent expression

C = − 3

4R

( ∞∑
m=1

ϕ(m) + 2 lim
β→0

∞∑
m=1

ϕ(m) y2m

1− y2m

)
. (13)

After regulating the first term using a spectral zeta func-
tion via the identity

∑∞
m=1 ϕ(m)m−s = ζ(s − 1)/ζ(s),

and regulating the second using the Lambert series,∑∞
m=1 ϕ(m)qm/(1− qm) = q/(1− q)2, we obtain

C = − 1

4R

(
3ζ(−1)

ζ(0)
+

6R2

β2
− 1

2

)
= − 3R

2β2
(14)

up to O(β2). The divergent contribution is cancelled by a∫
d4x
√
gR counter-term. Absence of a finite term in (14)

means that the renormalized EC is zero. A similar calcu-
lation gives γ = −3π/2. At first glance, splitting terms in
(9) and regularizing them individually might seem wor-
risome, but since we have used a spectral zeta function
and the cutoff functions depend only on the spectrum
throughout, these manipulations are justified.

Numerical computation. To compute EC numeri-
cally we examine the ε→∞ limit of ZST[e−e

−iαε] where
ε = (µR)−1with a cutoff kmax on the k sum in (4). One
can use any α for which singularities are avoided for large
µ. Our final result for EC , which turns out to be zero,
is independent of regularization parameters such as α.
Increasing kmax allows probing ZST at higher µ, and
the physical result for EC is obtained via an extrapo-
lation of finite kmax results to kmax →∞. As illustrated
by Fig. 2, a plot of ε2|∂εZST| reveals that as ε → 0,
ZST ≈ c1/ε

2+(finite). This leads to the interesting re-
sult that its leading divergence as µ → ∞ scales as µ2,
rather than µ4 as one might have expected from (10)[14].
Hence only a µ2

∫
d4x
√
gR counterterm is necessary to

renormalize the vacuum energy of the N = ∞ theory,
in contrast to generic quantum field theories, which also
require µ4

∫
d4x
√
g counter-terms.

More precisely, our numerical results imply that at
small ε, ZST (ε) approaches the form ZST (ε) = c1/ε +
c2 + c3ε + O(ε2). For instance, the kmax = 102 data in
the table below, using α = π/4, results from a least-
squares fit on the range ε ∈ [0.06, 0.15], with step size

ϵ2 |∂ϵ ZST[ϵ]|, kmax = 500

ϵ2 |∂ϵ ZST[ϵ]|, kmax = 200

0.00 0.02 0.04 0.06 0.08 0.10
ϵ = (μ R)-1

2.5

3.0

3.5

4.0
ϵ2 |∂ϵ ZST[ϵ]|

N = ∞ Yang-Mills

FIG. 2. (Color Online.) Visualization of Eq. (9) for pure
N =∞ YM theory as a function of the UV cutoff ε = (µR)−1

such that y = e−e
−iαε, for kmax = 500 (solid red curve) and

kmax = 100 (dashed blue curve), with fixed α = π/4. The
finiteness of ε2∂εZST as ε → 0 implies that in the N = ∞
theory the leading divergence in the vacuum energy density
calculation is µ2, rather than the µ4 familiar from generic 4D
QFTs. The deviation from linearity at very large µ is due to
the finiteness of kmax.

10−3, and has a root mean square error for the real and
imaginary parts of ZST[e−e

−iαε] of 5×10−7 and 1×10−7,
respectively. Comparison to the earlier sections reveals
that c2 = −γ/π, while c3 = −2ECR. Working at small
ε, we performed numerical least-squares fits of ZST(ε) to
this asymptotic form, with smaller ε values becoming ac-
cessible for larger kmax. The table below summarizes our
extracted values of γ and EC for the example of pure
Yang-Mills theory, with α = π/4 held fixed. These re-
sults are consistent with our analytic calculations.

kmax γ/π − (−3/2) ECR

102 (2.22− 0.34i)× 10−2 (−5.14 + 0.56i)× 10−2

103 (1.37 + 0.59i)× 10−4 (−1.46− 0.69i)× 10−3

104 (−2.90− 4.09i)× 10−6 (0.86 + 1.49i)× 10−4

5× 105 (1.00− 2.08i)× 10−7 (0.75 + 3.81i)× 10−5

We have checked that the analytic results for EC
and γ are also reproduced numerically for theories with
Nf = 0, Ns ≥ 0. We have not succeeded in getting stable
numerical results for EC once Nf ≥ 1, so for this sub-
class of theories our conclusions rely on our two analytic
arguments.

Conclusions—The confining-phase Casimir vacuum
energy in non-supersymmetric large N gauge theories
with adjoint matter turns out to be zero. This result
cannot be attributed to cancellations between bosons and
fermions, since it holds even in Yang-Mills theory, which
has a purely bosonic spectrum. Since we find a zero vac-
uum energy in a variety of examples, it is unlikely to
be an accident. It appears that there is a mechanism
other than SUSY that can make vacuum energies van-



5

ish, at least in a class of N = ∞ gauge theories, and
consequently also in their string duals.

Obviously the most pressing task suggested by our re-
sults is to understand them in terms of some symmetry
principle. This may involve some novel emergent large N
symmetry of confined phases of gauge theories, or some
previously unrecognized N = ∞ consequence of an al-
ready known symmetry, such as center symmetry. It will
be valuable to gather further clues by generalizing the
analysis, and to explicitly compute 1/N corrections to the
vacuum energy. Depending on how broadly the results
generalize, it is possible that they may find phenomeno-
logical applications. It is important to see whether the
vacuum energy continues to vanish if additional scales
are introduced into the problem, for instance by working
with a squashed S3, and to understand the consequences
of including contributions from other matter field repre-
sentations. Finally, we note that there may be some rela-
tions between our results and the recent observation that
the S3 × S1 Casimir energy vanishes in non-interacting
conformal higher-spin theories[12].
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