
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamics and Correlations among Soft Excitations in
Marginally Stable Glasses

Le Yan, Marco Baity-Jesi, Markus Müller, and Matthieu Wyart
Phys. Rev. Lett. 114, 247208 — Published 18 June 2015

DOI: 10.1103/PhysRevLett.114.247208

http://dx.doi.org/10.1103/PhysRevLett.114.247208


Dynamics and Correlations among Soft Excitations in Marginally Stable Glasses

Le Yan,1 Marco Baity-Jesi,2, 3, 4 Markus Müller,5, 6 and Matthieu Wyart1

1Center for Soft Matter Research, Department of Physics, New York University,
4 Washington Place, New York, 10003, NY
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Marginal stability is the notion that stability is achieved, but only barely so. This property con-
strains the ensemble of configurations explored at low temperature in a variety of systems, including
spin, electron and structural glasses. A key feature of marginal states is a (saturated) pseudo-gap
in the distribution of soft excitations. We examine how such pseudo-gaps appear dynamically by
studying the Sherrington-Kirkpatrick (SK) spin glass. After revisiting and correcting the multi-
spin-flip criterion for local stability, we show that stationarity along the hysteresis loop requires
soft spins to be frustrated among each other, with a correlation diverging as C(λ) ∼ 1/λ, where
λ is the stability of the more stable spin. We explain how this arises spontaneously in a marginal
system and develop an analogy between the spin dynamics in the SK model and random walks in
two dimensions. We discuss analogous frustrations among soft excitations in short range glasses and
how to detect them experimentally. We also show how these findings apply to hard sphere packings.

Introduction: In glassy materials with sufficiently long-
range interactions, stability at low temperature imposes
an upper bound on the density of soft excitations [1]. In
electron glasses [2–7] stability towards hops of individual
localized electrons requires that the density of states van-
ishes at the Fermi level, exhibiting a so-called Coulomb
gap. Likewise, in mean-field spin glasses [8–15] stabil-
ity towards flipping several “soft” spins implies that the
distribution of local fields vanishes at least linearly. In
hard sphere packings the distribution of forces between
particles in contact must vanish analogously, preventing
that collective motions of particles lead to denser pack-
ings [16–18]. Often, these stability bounds appear to be
saturated [6, 9, 15, 17, 19, 20]. Such marginal stability

can be proven for dynamical, out-of-equilibrium situa-
tions under slow driving at zero temperature [1] if the ef-
fective interactions do not decay with distance. This sit-
uation occurs in the Sherrington-Kirkpatrick (SK) model
(see Eq. (1) below), but also in finite-dimensional hard
sphere glasses, where elasticity induces non-decaying in-
teractions [21]. Marginality is also found for the ground
state or for slow thermal quenches by replica calculations
for spin glass [10, 22] and hard sphere systems [23, 24],
assuming infinite dimension.

The presence of pseudo-gaps strongly affects the phys-
ical properties of these glasses. The Coulomb gap alters
transport properties in disordered insulators [2, 3], while
its cousin in spin glasses suppresses the specific heat and
susceptibility. It was recently proposed that the singu-
lar rheological properties of dense granular and suspen-
sion flows near jamming are controlled by the pseudo-
gap exponents in these systems [25]. More generally,
an argument of Ref. [1] shows that a pseudo-gap im-

plies avalanche-type response to a slow external driv-
ing force, so-called crackling [26], for a range of applied
forcing. Such behavior is indeed observed in these sys-
tems [6, 9, 27] and in the plasticity of crystals [28], and
contrasts with depinning or random field Ising models
where crackling occurs only at one specific value of forc-
ing [29–31]. Despite the central role of pseudo-gaps, it
has not been understood how they emerge dynamically,
even though some important elements of the athermal
dynamics of the SK spin glass have been pointed out in
earlier works [11, 12].
In this Letter we identify a crucial ingredient that was

neglected in previous dynamical approaches, and also
in considerations of multi-spin stability: Soft spins are
strongly frustrated among each other, a correlation that
becomes nearly maximal for spins in the weakest fields.
We expect analogous correlations in short range spin
glasses, which can be probed experimentally. These cor-
relations require revisiting earlier multi-spin stability ar-
guments that assumed opposite correlations. We then ar-
gue, assuming stationarity along the hysteresis loop, that
the correlation C(λ) between the softest spins and spins
in local fields of magnitude λ must follow C(λ) ∼ 1/λγ ,
with γ = 1. Using this in a Fokker-Planck description of
the dynamics we predict the statistics of the number of
times a given spin flips in an avalanche.
Model: We consider the SK model with N Ising spins

(si = ±1) in an external field h:

H = −1

2

∑

i6=j

Jijsisj − h

N
∑

i=1

si. (1)

All spins are coupled to each other by a symmetric matrix
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Jij , whose elements are i.i.d. Gaussian random variables
with zero mean and variance 1/N . The total magnetiza-
tion is M ≡ ∑

i si. We define the local field hi and the
local stability λi of spin i by

hi ≡ −∂H
∂si

=
∑

j 6=i

Jijsj + h, λi = hisi. (2)

The spin si is called stable when it aligns with the local
field, i.e. if λi > 0, and unstable otherwise. The energy
to flip the spin si → −si (and hence λi → −λi) is:

∆H1(i) ≡ H(−si)−H = 2si(
∑

j 6=i

Jijsj + h) = 2λi. (3)

As in Ref. [9], we consider the hysteresis loop at zero
temperature obtained by quasi-statically increasing the
field, as shown in Fig. 1(a). When a spin turns unstable,
we apply a greedy Glauber dynamics that relaxes the sys-
tem in an avalanche-like process towards a new one-spin-
flip stable state by sequentially flipping the most unstable
spin. Such hysteretic field ramping has also been used
to find approximate ground states [32, 33]. Those states
empirically exhibit a pseudo-gap in the distribution of
the λi [9, 11, 15],

ρ(λ) = Aλθ +O(N−θ/(1+θ)), (4)

with θ = 1 for λ ≪ 1, as shown in Fig. 1(b), but with
a slope A significantly larger than in equilibrium [10, 12,
34]. The avalanche size is power-law distributed [9]:

D(n) = n−τd(n/Nσ)/Ξ(N), (5)

where n is the number of flips in an avalanche. The
scaling function d(x) vanishes for x ≫ 1. Nσ is the finite
size cutoff, and Ξ(N) is a size dependent normalization
if τ ≤ 1. Numerical studies of the dynamics of the SK
model indicate that τ = σ = 1 and Ξ = lnN [9, 15], as
shown by the finite size collapse in Fig. 1(c). While one
can argue that θ = 1 along the hysteresis curve [1], the
exponents τ and σ have not been derived theoretically
for the dynamics (unlike for “equilibrium avalanches”,
for which τ = 1 has been obtained analytically [13, 14]).
Below we present a theoretical analysis of the dynam-

ics. We assume that the average number of times a spin
flips along the hysteresis loop diverges with N for any fi-
nite interval of applied field [h, h+∆h] if h = O(1). This
assures that a stationary regime is reached rapidly. (For
τ = 1 this condition simply reads σ+1/(1+ θ) > 1) [35].
We further rely on θ < ∞. This implies a diverging num-
ber of avalanches in the hysteresis loop, each contribut-
ing a subextensive amount of dissipation [35]. The latter
rules out avalanches running into strongly unstable con-
figurations, with an extensive number of spins with nega-
tive stability |λ| = O(1). Thus, the lowest local stability
encountered in an avalanche, λ0, must satisfy λ0 → 0 as
N → ∞, as we confirm numerically in Fig. 2(a).
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FIG. 1. (a) Hysteresis loop: Magnetization M under a peri-
odic quasi-static driving of the external field h. Inset: magni-
fied segment of the hysteresis loop of a finite size system. (b)
Distribution of local stabilities, ρ(λ), in locally stable states
along the hysteresis loops for different system sizes N . (c)
Finite size scaling of the avalanche size distribution D(n) con-
firms τ = σ = 1 up to logarithmic corrections. (d) Correlation
C(λ) between the least stable spin and spins of stability λ in
locally stable states along the hysteresis loop. The data for
different system sizes collapses, implying C(λ ≪ 1) ∼ 1/λ in
the thermodynamic limit.
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FIG. 2. (a) The average dissipated energy ∆H in avalanches

of size n scales as ∆H ∼ n lnn/
√
N . −∆H/n is a measure of

the typical value of the stability of most unstable spins, λ0(n).

Thus, in the thermodynamic limit, λ0 ∼ lnn/
√
N ≪ 1 even

for very large avalanches. (b) The average number of times,
F (n), spins active in avalanches of size n re-flip later on in
the avalanche.

Multi-spin stability criterion: A static bound for the
pseudogap exponent θ is obtained by considering two of
the softest spins i, j (with stabilities λmin ∼ 1/N1/(1+θ))
[1, 36, 37]. Their simultaneous flip costs an energy 2(λi+
λj − 2sisjJij). The last term scales as 1/

√
N and is

negative if the two spins are unfrustrated. If this occurs
with finite probability, a strong enough pseudogap, θ ≥ 1,
is necessary to prevent the last term from overwhelming
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the stabilizing terms. The extension of this argument to
multi-spin stability reveals its subtle nature. Flipping a
set F of m spins in a one-spin flip stable state costs

∆H(F) = 2
∑

i∈F

λi − 2
∑

i,j∈F

Jijsisj . (6)

The initial state is unstable to multi-flip excitations if
∆H < 0 for some F . Refs. [36, 37] considered just the
set of the m softest spins. Extremal statistics and the
assumption of Eq. (4) implies the scaling of the maximal
stabilities λ(m) ∼ (m/N)1/(1+θ), and thus

∑

i≤m λi ∼
mλ(m). The term

∑

i≤m Jijsisj ∼ m(m/N)1/2 was erro-
neously argued to be positive on average, which yielded
the bound θ ≥ 1 to guarantee ∆Hm > 0. However,
numerically we find that on average

∑

i≤m Jijsisj is
negative for soft spins. More precisely, the correlation
C(λ) = −2〈Jss〉 between a spin of stability λ and the
softest spin in the system is positive for small λ, as shown
in Fig. 1(d). Postulating that:

C(λ) ∼ λ−γN−δ, (7)

it is straightforward to estimate that 〈−∑

i≤m Jijsisj〉 ∼
m2C(λ(m)) ∼ m2−γ/(1+θ)Nγ/(1+θ)−δ. A more complete
characterization of correlations is given in the Supple-
mental Material [38], Sec. A and B.
It follows that the average r.h.s. of Eq. (6) is always

positive. We argue that the stability condition never-
theless leads to a non-trivial constraint, because the last
term of Eq. (6) can have large fluctuations. Indeed, con-
sider all sets F ofm spins belonging to them′ > m softest
spins, and for definiteness we choose m′ = 2m here. To
determine the probability that the optimal set leads to a
negative ∆H in Eq. (6), we use an approximate estimate
akin to the random energy model [39]. The variance of
the fluctuation X ≡ ∑

i,j∈F Jijsisj − 〈∑i,j∈F Jijsisj〉
is of order m/

√
N . Since there are 22m sets F , the

number density having fluctuation X follows N (X) ∼
exp[2m ln(2) − X2N/m2]. The most negative fluctua-
tion Xmin is determined by N (Xmin) ∼ 1, leading to
Xmin ∼ −m3/2/

√
N . Correlations neglected by this

argument should not affect the scaling. The associated
energy change is thus, according to Eq. (6) and the sub-
sequent estimates of each term:

∆H(Fmin) = m(2+θ)/(1+θ)/N1/(1+θ)+

m2−γ/(1+θ)Nγ/(1+θ)−δ −m3/2/
√
N. (8)

Multi-spin stability requires that for large N and fixed m
this expression be positive. This yields the conditions:

θ ≥ 1, or γ/(1 + θ)− δ ≥ −1/2. (9)

However, the correlation in Eq. (7) cannot exceed the
typical coupling among spins, C . 1/

√
N , which requires

γ/(1 + θ) − δ ≤ −1/2. Thus, if θ < 1, stability imposes

the equality γ/(1+ θ)− δ = −1/2, while the scaling with
m ≫ 1 additionally requires 2 − γ/(1 + θ) ≥ 3/2; or in
other words, γ ≤ (1+θ)/2 ≤ 1 and δ ≤ 1. In the relevant
states, all three exponents θ, γ, and δ turn out to equal 1
and thus satisfy these constraints as exact equalities. We
will now show how to understand this emergent marginal
stability from a dynamical viewpoint.

Fokker-Planck equation: Consider an elementary spin
flip event in the greedy relaxation dynamics, cf. Fig. 3.
The stability of the flipping spin 0 (red) changes from
λ0 to −λ0 as the spin flips from s0 to −s0. Due to the
coupling J0j , the stability of all other spins j (green or
blue) receives a kick, λj → λ′

j = λj − 2J0js0sj . Using an
expansion in 1/N , we can describe the dynamics of the
distribution of local stabilities ρ(λ, t) by a Fokker-Planck
equation, similarly as in Refs. [11, 12]:

∂tρ(λ, t) = −∂λ [v(λ, t)− ∂λD(λ, t)] ρ(λ, t)

− δ(λ − λ0(t)) + δ(λ+ λ0(t)), (10)

where t counts the number of flips per spin. The drift
v(λ, t) ≡ −2N〈J0is0si〉λi=λ ≡ NC(λ, t) is the average
positive kick received by a spin of stability λ. The dif-
fusion constant D(λ, t) ≡ 2N〈J2

0i〉λi=λ = 2 is the mean
square of those kicks, where we have assumed that the
random parts of successive kicks are uncorrelated, as our
numerics support. For the dynamics to have a non-trivial
thermodynamic limit the scaling 〈J0is0si〉 ∼ 1/N must
hold, i.e., δ = 1 in Eq. (7). We further recall that
λ0(t) → 0 as N → ∞. We may thus replace the δ-
functions in Eq. (10) by a reflecting boundary condition
at λ = 0,

[v(λ, t) − ∂λD(λ, t)] ρ(λ, t)|λ=0 = 0. (11)

Since we assume that spins flip many times along the
hysteresis loop, finite intervals on the loop correspond
to diverging times ∆t → ∞. At those large times a
dynamical steady state (ss) must be reached. In such a
state the flux of spins must vanish everywhere:

vss(λ) = D∂λρss(λ)/ρss(λ) → 2θ/λ , (12)

where we assumed that ρss follows Eq. (4). This result
is tested in Fig. 1(d). A similar result was obtained in
Ref. [12] following a quench.

Emergence of correlations: Eq. (12) implies that γ = 1
in Eq. (7). Such singular correlations are unexplained
[40]. We now argue that they naturally build up in the
dynamics through the spin-flip induced motion of stabil-
ities of frustrated and unfrustrated spins, as illustrated
in Fig. 3. To quantify this effect we define respectively
Cf (λ) and C′

f (λ) as the correlation between the flipping
spin 0 and the spins at λ before and after a flip event. As
s0 flips, the stability of spin i increases by xi ≡ −2J0is0si,
λ′
i = λi + xi. The correlation C′

f (λ) is an average over
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ρ(λ) +

0 λ

unstable stable

−

FIG. 3. Illustration of a step in the dynamics, in the SK model
and the random walker model. Circles on the λ-axis represent
the spins or walkers. At each step, the most unstable spin (in
red) is reflected to the stable side, while all others (in green
or blue) receive a kick and move. The dashed and solid line

outlines the density profile ρ(λ) ∼ λ for λ > 1/
√
N . The blue

spins were initially frustrated with the flipping spin 0. They
are stabilized and are now unfrustrated with 0. In contrast,
green spins become frustrated with spin 0 and are softer now.
Because of the motion of spins depends on their frustration
with spin 0, a correlation builds up at small λ, leading to an
overall frustration of “soft” spins among each other.

all spins which migrated to λ due to the flip:

C′
f (λ) =

1

ρ′(λ)

∫

ρ(λ− x)(−x)fλ−x(x)dx,

ρ′(λ) =

∫

ρ(λ− x)fλ−x(x)dx.

fλ(x) is the Gaussian distribution of kicks x given to spins

of stability λ: fλ(x) = exp
[

− (x−Cf(λ))
2

4D/N

]

/
√

4πD/N . In

the integrands we expand ρ(λ − x) and Cf (λ − x) for
small x and keep terms of order 1/N , which yields

C′
f (λ) = −Cf (λ) + 2

D

N

∂λρ(λ)

ρ(λ)
, (13a)

ρ′(λ) = ρ(λ)− ∂λ

[

Cf (λ)ρ(λ) −
D

N
∂λρ(λ)

]

. (13b)

Thus, even if correlations are initially absent, Cf (λ) = 0,
they arise spontaneously, C′

f (λ) = 2D∂λρ(λ)/Nρ(λ).
In the steady state, ρ′ss = ρss, and Eq. (13b) implies the

vanishing of the spin flux, that is, Eq. (12) with v = NCf .
Plugged into Eq. (13a), we obtain that the correlations
are steady, too,

C′
f (λ) = Cf (λ) =

vss(λ)

N
=

2θ

Nλ
. (14)

These correlations are expected once the quasi-statically
driven dynamics reaches a statistically steady regime,
and thus should be present both during avalanches and
in the locally stable states reached at their end.
Interestingly, Eq. (14) implies that all the bounds of

Eq. (9) are saturated if the first one is, i.e., if θ = 1.

The latter value was previously derived from dynami-
cal considerations in Ref. [1]. It is intriguing that the
present Fokker-Planck description of the dynamics does
not pin θ, as according to Eqs. (12, 14) any value of θ
is acceptable for stationary states. However, additional
considerations on the applicability of the Fokker-Planck
description discard the cases θ > 1 and θ < 1, as dis-
cussed in the Supplemental Material, Sec. C.
Those are related to the interesting fact that that

Eqs. (10, 11, 12) with θ = 1 are equivalent to the Fokker-
Planck equation for the radial component of unbiased
diffusion in d = 2 (as derived in Supplemental Material,
Sec. D), whose statistics is well known [41, 42]. We can
use this analogy to predict F (n), the number of times an
initially soft spin flips in an avalanche of size n. Indeed,
a discrete random walker starting at the origin will visit
that point ln(t) times after t steps in two dimensions, and
thus F (n) ∼ ln(n), as supported by Fig. 2(b). Similarly
we expect times between successive flips of a given spin
to be distributed as P (δt) ∼ 1/(δt[ln(δt)]2).
Short range systems and experiments: In short range

spin glasses we expect and have numerically checked anal-
ogous frustrated correlations between pairs of directly in-
teracting soft spins as in the SK model, except that the
growth of correlations at small λ is cut off at the typical
coupling between spins. This prediction can be tested in
experiments akin to NMR protocols: First flip the spins
of stability λ by a π-pulse of appropriate frequency. Then
flip those of stability λ′ and observe the resulting shift in
the fluorescence spectrum around λ. From our findings
we predict a systematic shift to higher frequencies.
Conclusions: We have studied the quasi-static dynam-

ics in a marginally stable glass at zero temperature, fo-
cusing on a fully-connected spin glass as a model sys-
tem. Our central result is that the pseudo-gap appears
dynamically due to a strong frustration among the soft-
est spins, characterized by a correlation function C(λ)
which scales inversely with the stability λ. We provided a
Fokker-Planck description of the dynamics that explains
the appearance of both the pseudo-gap and the singular
correlation, and suggests a fruitful analogy between spin
glass dynamics and random walks in two dimensions.
We expect our findings to apply to other marginally

stable systems, in particular hard sphere packings
that display a pseudo-gap with a non-trivial exponent:
P (f) ∼ fθe [16, 17, 20, 23] where f is the contact force.
Our analysis above suggests that a singular correlation
function C(f) ∼ 1/f characterizes how contacts are af-
fected by the opening of a contact of very weak force, the
relevant excitations in packings [16, 17]. Contacts with
small forces should on average be stabilized by C(f) -
a testable prediction. Our analysis also suggests a con-
nection between sphere dynamics and random walks in
dimension 1 + θe, which is interesting to explore further.
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Phys. Rev. Lett. 83, 1034 (1999).

[10] S. Pankov, Phys. Rev. Lett. 96, 197204 (2006).
[11] P. R. Eastham, R. A. Blythe, A. J. Bray, and M. A.

Moore, Phys. Rev. B 74, 020406 (2006).
[12] H. Horner, Eur. Phys. Jour. B 60, 413 (2007).
[13] P. L. Doussal, M. Müller, and K. J. Wiese,

EPL (Europhysics Letters) 91, 57004 (2010).
[14] P. Le Doussal, M. Müller, and K. J. Wiese,

Phys. Rev. B 85, 214402 (2012).
[15] J.C. Andresen, Z. Zhu, R.S. Andrist, H.G. Katz-

graber, V. Dobrosavljević, and G.T. Zimanyi,
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[29] O. Perković, K. Dahmen, and J. P. Sethna,
Phys. Rev. Lett. 75, 4528 (1995).

[30] D. Dhar, P. Shukla, and J. P. Sethna,
Journal of Physics A: Mathematical and General 30, 5259 (1997).

[31] S. Sabhapandit, D. Dhar, and P. Shukla,
Phys. Rev. Lett. 88, 197202 (2002).

[32] S. Boettcher, Eur. Phys. J. B 46, 501 (2005).
[33] K. F. Pál, Physica A: Statistical Mechanics and its Ap-

plications 367, 261 (2006).
[34] G. Parisi, Journal of Physics: Condensed Matter 15,

S765 (2003).
[35] The typical external field increment triggering an

avalanche is hmin ∼ λmin ∼ N−1/(1+θ), so there are
Nav ∼ 1/hmin ∼ N1/(1+θ) avalanches in a finite range
of external field dh [1]. Each avalanche contains on av-

erage Nflip ∼
∫
nD(n)dn ∼ N (2−τ)σ flip events. The

total number of flip events along the hysteresis curve
is NavNflip ∼ N (2−τ)σ+1/(1+θ), which we assume to be
≫ N .

[36] R. G. Palmer and C. M. Pond,
Journal of Physics F: Metal Physics 9, 1451 (1979).

[37] P. W. Anderson, Ill-Condensed Matter, edited by
R. Balian, R. Maynard, and G. Toulouse, p. 159 (North-
Holland, Amsterdam, 1979).

[38] Supplemental Material includes Refs. [1, 43].
[39] B. Derrida, Phys. Rev. B 24, 2613 (1981).
[40] The approximation Eq. (21) in Horner yields an incorrect

scaling behavior for C(λ), assuming a pseudogap.
[41] S. Redner, A Guide to First-Passage Processes (Cam-

bridge University Press, 2001).
[42] A. J. Bray, S. N. Majumdar, and G. Schehr,

Advances in Physics 62, 225 (2013).
[43] H. Risken, ed., The Fokker-Planck equation: Methods of

solution and applications (Springer, 1996).

http://stacks.iop.org/0022-3719/8/i=4/a=003
http://dx.doi.org/10.1103/PhysRevLett.93.256403
http://dx.doi.org/10.1103/PhysRevB.75.144201
http://stacks.iop.org/1742-6596/376/i=1/a=012009
http://dx.doi.org/10.1080/14786437708235992
http://dx.doi.org/10.1103/PhysRevLett.83.1034
http://dx.doi.org/10.1103/PhysRevLett.96.197204
http://dx.doi.org/10.1103/PhysRevB.74.020406
http://dx.doi.org/10.1140/epjb/e2008-00017-1
http://stacks.iop.org/0295-5075/91/i=5/a=57004
http://dx.doi.org/10.1103/PhysRevB.85.214402
http://dx.doi.org/10.1103/PhysRevLett.111.097203
http://dx.doi.org/10.1103/PhysRevLett.109.125502
http://dx.doi.org/10.1039/C3SM50515D
http://dx.doi.org/ 10.1103/PhysRevLett.75.4528
http://stacks.iop.org/0305-4470/30/i=15/a=013
http://dx.doi.org/10.1103/PhysRevLett.88.197202
http://dx.doi.org/10.1140/epjb/e2005-00280-6
http://stacks.iop.org/0305-4608/9/i=7/a=024
http://dx.doi.org/10.1103/PhysRevB.24.2613
http://dx.doi.org/10.1080/00018732.2013.803819

