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Circularly polarised light opens a gap in the Dirac spectrum of graphene and topological insulator
(TI) surfaces, thereby inducing a quantum Hall-like phase. We propose to detect the accompanying
edge states and their current by the magnetic field they produce. The topological nature of the edge
states is reflected in the mean orbital magnetization of the sample, which shows a universal linear
dependence as a function of a generalized chemical potential – independent of the driving details
and the properties of the material. The proposed protocol overcomes several typically encountered
problems in the realization and measurement of Floquet phases, including the destructive effects of
phonons and coupled electron baths and provides a way to occupy the induced edge states selectively.
We estimate practical experimental parameters and conclude that the magnetization signature of
the Floquet topological phase may be detectable with current techniques.
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The last decade has seen huge steps in the quest to
understand [1–4], produce and detect topological band
insulators and superconductors [5–8]. While a variety
of materials that realize topological phases are known by
now, experimentalists still fight with material-specific im-
perfections [9]. It was proposed though that subjecting
non-topological materials to light could provide another,
fundamentally different way to induce topological prop-
erties in electronic behaviour [10–12].

Topological phases induced in this way form part of
a wider class of systems termed Floquet topological in-
sulators [13–17]. They are intrinsically non-equilibrium
systems inheriting their properties from both the oscil-
lating electromagnetic field and the initial band structure
of the material. For example circularly-polarized light
is expected to act similar as a static magnetic field on
graphene or a TI surface – opening a gap in the Dirac-
spectrum and driving the system in a quantum Hall-like
state [10, 18–21]. Recently experiments have observed
first signatures of this effect in the band structure [22–
24], but demonstration of the topological nature of the
light-generated phase remains an open problem.

The hallmark of TIs is the existence of protected
boundary states [1–4, 25], a fact that extends to light-
induced topological phases [10–12, 17]. For example,
both integer quantum Hall and light-induced quantum
Hall-like phases feature a number of unidirectional edge
states that carry a constant current around the sample
if occupied. An experimental observation of these light-
induced edge states would prove the topological nature
of a light-induced gap and is therefore highly desirable.

In this work we propose an experimental protocol that
allows to create such topological edge currents in a con-
trolled fashion and measures them through the magnetic
field they produce. The setup we envision is depicted
in Fig. 1a). An isolated two-dimensional electronic sys-
tem, here graphene, is irradiated by circularly-polarized
light. Careful design of the laser pulse and control over
the initial chemical potential allows to selectively occupy
the induced edge states and ensures that phonons do not

destroy the effect. The resulting edge current produces a
magnetic field pattern resembling that of a current loop,
see Fig. 1b). We expect that it becomes visible in sensi-
tive measurements of the magnetic field, especially close
to the edge of the sample, e.g. by using a SQUID de-
vice [26–28]. In contrast to all the measurement tech-
niques pursued so far [28–32], our approach combines an
isolated sample with a non-invasive probing technique
and thereby overcomes the destructive effects of coupled
leads that are fatal for the driven phase.

Hamiltonian and Floquet states. Inspired by recent
experiments on TIs [22, 23], we will focus on Dirac-like
electron systems and circularly-polarized light to demon-
strate our more general concepts. Instead of discussing
TIs themselves, we turn to graphene, which also has a
Dirac spectrum but is considerably easier to simulate –
however, our results should be transferable. Graphene
can be captured by a honeycomb tight-binding Hamilto-
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FIG. 1: a) Setup and b) Magnetic field pattern produced by
a Floquet edge state, see supplementary material.
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nian [33],

H(t) =
∑
ji

γc†jci + [E(t) · xi] c†i ci (1)

where the sum runs over nearest neighbours. The sec-
ond term describes the effect of the rotating electric field
E(t) = E0(sinωt, cosωt) caused by the light, where xi
denotes the position operator of site i. The effects of the
much smaller magnetic contribution of the light field can
be neglected [10]. In the following we will use the dimen-
sionless quantity A = eE0a/~ω to characterise the light
intensity and the hopping energy γ = 2~vF /3a ≈ 2.8eV
as the unit of energy. Here vF ≈ 106m/s is the Fermi
velocity near the Dirac point and a = 1.41Å the carbon-
carbon spacing. The simulations are performed on a
square array of L× L graphene unit cells.

In a periodically-driven system like ours, the role of en-
ergy (which is not conserved) is taken over by quasiener-
gies εj ∈ (−π/T, π/T ], eigenvalues of the so-called Flo-
quet operator F = U(T ), the time evolution operator
U(t) for one period. The corresponding eigenstates re-
turn to their initial form after propagation for one cycle,
F|fj〉 = e−iεjT |fj〉, which makes the set of all of these
so-called Floquet states a very useful basis.

The circularly-polarized radiation opens a gap in the
quasienergy spectrum of graphene, as illustrated in the
inset of Fig. 1 for a strip geometry sample [34]. This gap
can be regarded as a gap ”of magnetic type” due to the
formal similarity to the gap induced by a time-reversal
symmetry breaking field [21]. The topological edge states
that arise (green) are Floquet eigenstates with quasiener-
gies crossing the bulk quasienergy gap. They come hand
in hand with a non-trivial total winding of the Floquet
states in the Brillouin zone [13, 16, 17], in analogy to the
corresponding time-independent situation [35].

Orbital magnetization of Floquet states. The orbital
magnetization operator for electrons in an isolated two-
dimensional sample of area V is given by

M̂(t) = − e

2~cV
r̂ × v̂ = − e

2~cV
r̂ × i[r̂, H(t)], (2)

in Gaussian units. For the electric gauge chosen in
Eq. (1), M̂(t) becomes time-independent.

An electron that is found in a Floquet eigenstate |fi(t)〉
would contribute Mii(t) = 〈fi(t)|M̂ |fi(t)〉 to the orbital
magnetization of the sample. We will be particularly in-
terested in the mean magnetization M̄ii, obtained by av-
eraging Mii(t) over one period of the driving field. Writ-

ten in terms of the Fourier components |φ(l)i 〉 of the pe-
riodic part |φi(t)〉 = |φi(t + T )〉 of the Floquet state,
|fi(t)〉 = e−iεit|φi(t)〉, it becomes

M̄ii =
1

T

T∫
t=0

dt Mii(t) =
∑
l

〈φ(l)i |M̂ |φ
(l)
i 〉. (3)

The last expression can be understood as the expec-
tation value of a block diagonal operator M̄F with block

components (M̄F )kl = M̂δkl over the vector of Fourier

components |Φi〉 = (. . . , |φ(1)i 〉, |φ
(0)
i 〉, |φ

(−1)
i 〉, . . .)T . The

|Φi〉 in turn are the eigenvalue of the so-called Floquet
Hamiltonian [36], as discussed in more detail in the sup-
plementary material.

Hence we can interpret the formula for the mean mag-
netization as the magnetization of a non-driven sys-
tem with a multi-orbital (corresponding to the frequency
components) Hamiltonian. It follows that all statements
known about the orbital magnetization in non-driven sys-
tems, [37], apply correspondingly for the mean magneti-
zation of irradiated samples, including statements about
the influence of the Berry curvature and, in particu-
lar, the orbital magnetization contribution of topologi-
cal edge states. This conclusion is a major result of this
manuscript.

Signatures of light-induced quantum Hall edge states.
Now consider an infinite strip of graphene with conserved
momentum k. The edge states are Floquet states lo-
calized at the edges of the sample, with mean velocity
v = dεk

~dk [38, 39]. Let’s assume for the moment that we
can occupy Floquet states at will, filling e.g. the lower
Floquet band as shown in the inset of Fig. 1 from the
lowest quasienergy up to a ”quasienergy chemical po-
tential” µε. When occupying additional edge Floquet
states dµε, the current carried by the edge changes by
dI = −ev dk2π = − e

hdµε. Here dµε is the analogue of a
chemical potential for the quasienergies ε.

We already saw the effects of this current in the lo-
cal magnetic field pattern in Fig. 1b). In such a square
sample, the edge current circulates around the sample
and produces a magnetic field, which, through Maxwells
equations can be captured by a magnetization of strength
M = I/c. The mean orbital magnetization of a quantum
Hall edge state is thus given by the term

dMedge = − e

hc
C dµε, (4)

with C being the number of protected edge states cross-
ing the respective gap, analogous to the non-driven
case [37]. This universal linear mean magnetization be-
haviour is a unique signature of the edge states that de-
pends solely on the topological properties of the system.
Our numerical results in Fig. 2a) clearly demonstrate
this universality through the collapse of the mean mag-
netization M̄(µε) =

∑
εi<µε

M̄ii onto a single (green) line

M̄ = − e
hcµε for various laser parameters.

Experimental protocol and practical considerations.

Three major challenges need to be overcome to realize
and detect the Floquet phase experimentally:

The first one is to minimize energy exchange with
the environment, which would be fatal for the Floquet
states. We ensure this by our choice of a non-invasive
measurement, i.e. by detecting the effect via its mag-
netic field, thereby avoiding direct contact of the sam-
ple with fermionic reservoirs. This distinguishes our ap-
proach from conventional measurement setups [29–32].



3

�0.4

0.4

0.0

µ✏ [�]

M̄
[e
�
/h

c]

0.0 2.0�2.0

0.0

�0.2

0.2

0 1 2
n

0.1

0.0
1 10 100nsw

�0.1

0.0

0.1

0.1�0.1 0.0

M̄

0.01

�0.01
�0.4 0.40.0

! = 6�
A = 1.0

Zigzag: Armchair:
IF
FF

IF
FF

!/� A
6.0

6.0

6.0

1.0

1.5

0.5

1.0

1.0

10.0

14.0

!/� A

4.0

0.3

0.3

0.2

0.2

3.0

4.0

3.0

A = 0.2

�M̄

µ0 [�]

µ0

zigzag

armchairb)a) c)

FIG. 2: Mean magnetization a) as a function of the quasienergy potential µε. Collapsing curves for various laser parameters
demonstrate the universal linear dependence caused by the topological edge states. b) as a function of initial filling (IF) and
artificial Floquet filling (FF) for a switch-on process that lasts nsw =5 laser cycles , demonstrating that this short period is good
enough to transfer initial energy states mostly into Floquet states. The inset shows the quality ∆M of the switch-on process
as a function of nsw. c) as a function of the generalized chemical potential µ′ demonstrating the universal linear behaviour of
the topological edge states for the experimental protocol. Inset: collapsing curves in a low frequency regime, with frequencies
ω/γ = 0.4, 0.5, 0.6, 0.8 from red to orange. Main plots were simulated for L = 30, the insets for L = 20 (b) and L = 40 (c) [41].

As a second challenge, we need to ensure that the in-
herent relaxation processes of the system – phonons and
electronic interactions – do not influence the dynamics
strongly. This is achieved by choosing a very strong but
short laser pulse: not only is the desired non-linear ef-
fect induced to a measurable degree – the strong driving
also renders the competing (decay) energy scales less im-
portant. Combined with the very short pulse duration,
relaxation processes can be kept to a minimum – they
happen on longer time scales.

Let us now consider how to overcome the third major
challenge: we need to ensure that we can selectively oc-
cupy the Floquet states. Before the driving is present, the
system is in a low temperature ground state with chem-
ical potential µ, where all the electrons are essentially
found in energy eigenstates |ei〉 with energies Ei. Accord-
ing to the adiabatic theorem for periodically-driven sys-
tems [40], energy eigenstates can be turned into Floquet
states by an adiabatic switch-on of the driving strength.
We find that the times required for an approximately
adiabatic switch-on are surprisingly short.

To be more precise we smoothly turn on the elec-
tric field amplitude over a switch-on period tsw. The
electrons’ propagation through this time leads to new
states |ψi〉 = Uswitch|ei〉. After the switch-on process, the
Hamiltonian becomes strictly periodic and the time evo-
lution of the electronic states is best described by writing
them as a superposition of Floquet eigenstates, |ψi(t)〉 =∑
j aij |fj(t)〉. The prefactors aij = 〈fj(0)|Uswitch|ei〉 de-

pend only on the switch-on process and therefore the
shape of the laser pulse. For an adiabatic switch-on,
aij = δij . Together with the choice of initial chemical
potential µ, adiabaticity thus allows us to occupy Flo-
quet states in a controlled way.

The expectation value of the magnetization can be ex-
pressed as

M(t) =
∑
Ei<µ

∑
j,k

a∗ijaike
i(εj−εk)tMjk(t), (5)

with Mjk(t) = 〈φj(t)|M̂(t)|φk(t)〉. With a perfectly adi-
abatic switch-on process (aij = δij) the mean magnetiza-
tion is thus M̄ =

∑
Ei<µ

M̄ii, equal to the situation with
artificial quasienergy chemical potential µε.

The simulation results in Fig. 2b) demonstrate how
small a switch-on time is needed to obtain a nearly com-
plete adiabatic transition into Floquet states. To be more
precise, we plot the mean magnetization obtained after
a switch-on duration of tsw = 5T as a function of initial
filling fraction n (IF) and compare it to the “artificial”
magnetization curve as plotted in Fig. 2a), translated
into a function of Floquet band filling fraction (FF). The
transition from energy to Floquet states works excellently
for zigzag termination of the sample, with nearly indis-
tinguishable curves. For armchair edges, the adiabatic-
ity is good in overall, with some deviations closer to the
Dirac point. A realistic sample is expected to show a be-
haviour between the two extremes. The inset of Fig. 2b)
illustrates the adiabaticity for different switch-on times,
measured in terms of the integrated distance between the
curves, ∆M̄ =

∫
dn(M̄FF − M̄IF).

While M̄ as seen in Fig. 2b) depends linearly on n
when filling edge states, the gradient is not universal.
The universality uncovered in Eq. (4) can be seen for
the laser pulse protocol after transforming n into a gen-
eralized chemical potential dµ′ = L2dn/ρ(n) via the
density of Floquet states ρ. In the limit of weak driv-
ing this can be done in the edge state region by esti-
mation of ρ through the size of the light-induced gap

∆0 ≈ 2(~vF /a)2
~ω A2 and the distance of the Dirac cones

in the edge Brillouin zone, ∆k ≈ 2/
√

3a [18, 21]. We
thus obtain dµ′ = (2πL/8∆0) dn and as shown in Fig.
2c) the universal linear dependence is recovered, provid-
ing a direct way to see the topological nature of the edge
states.

Let us turn to lower laser frequencies now. In this
regime, the quasienergy spectrum becomes folded and
adiabaticity is not able to ensure the filling of Floquet
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states in the right order. Nevertheless, varying µ closely
around the Dirac point still occupies the Floquet edge
states in a controlled fashion as we demonstrate in the
inset of Fig. 2c). Note that the Dirac cones move closer
to each other when the driving parameters are varied [42],
leading to a topological transition roughly around ω ≈ γ
when reducing ω for fixed A = 0.2. In the course of the
transition, the direction of the edge state reverses, caus-
ing the opposite sign of the magnetization gradient ob-
served in the inset. Even though the Dirac points move,
the curves still collapse approximately away from a tran-
sition. Note that the low frequency regime supports ad-
ditional edge states around quasienergy ε = π/T , which
also feature a universal magnetization gradient following
Eq. (4). Adiabaticity gives some control over the occu-
pation of these edge states as well; the situation is more
complex though.

Experimentally the largest gaps can be achieved for
very low frequencies (ω ∼ 0.05γ) - unfortunately these
lie beyond reach of our simulation, due to the large sys-
tem sizes required to provide enough energy resolution.
Nevertheless we expect that the same arguments hold
also in this regime, encouraged by the experimental ob-
servations we discuss in the next paragraph.

Experimental considerations. Experimentally, a siz-
able gap of ∆0 ∼ 50meV has been induced by in-
tense circularly-polarized laser pulses (~ω = 120meV,
E0 ≈ 2.5×107 V/m) in the Dirac-like spectrum of a TI
surface [22]. The laser pulses hit an area of size ∼ 300µm
and had a pulse length 250fs containing ∼ 10 laser oscilla-
tions – thus they were short enough (.ps) to avoid strong
phonon relaxation [43–45]. Inspired by these values, con-
sider an experiment with either graphene or a TI surface
and a slightly higher light frequency or longer pulse du-
ration such that sufficiently many laser cycles (∼ 40) are
accommodated to realise both, a switch-on period of 5
cycles and a sizeable time span of periodic driving.

The total mean current flowing along the edge is
I = e∆0/h when the complete chiral edge state is filled
across a gap ∆0. For a gap size of ∆0 ∼ 50 meV as
in Ref. [22], the current would thus be I ≈ 2µA. Let’s
imagine measuring the magnetic field produced by this
current with a SQUID device of r ∼ µm radius for tem-
peratures around 4K. Realistically the SQUID operates
in a quantum limited regime with a magnetic field noise
of ∼ 10−11T/

√
Hz. In a region close to the current flow,

the magnetic field would be B ∼ µ0I/2r ∼ µT. SQUID
measurement times . 1ps would yield a signal to noise
ratio of ∼ 0.1. Present state of the art SQUIDS are not
able to achieve these short time scales yet, but ∼ 10ps
seems to be within experimental reach [46]. In such
a measurement, the observed mean magnetization is re-
duced by 1/10 and the noise by 1/

√
10, leading to a signal

to noise ratio of ∼ 0.03. Careful design of the experiment
and the laser parameters should be able to improve this
ratio – e.g. in graphene, the spin increases the current
by a factor of 2 and the higher Fermi velocity allows for

larger gaps. Stacking of electrically isolated graphene
layers would further enhance the field strength like in a
coil and should be feasible technology-wise [47]. Given
automated repetitive measurements we are thus expect-
ing that the magnetic field can be probed. Note that
operating the SQUID in the presence of an intense laser
pulse poses a technological challenge itself. However, it
will help that the pulses are very short and the fields
circularly polarized.

Disorder should not be able to destroy the magnetiza-
tion signature: first of all, an initial single Dirac cone and
its preparation are stable against weak disorder, a situa-
tion found e.g. on a TI surface. For the case of graphene,
disorder-induced coupling of the two Dirac cones can in
principle open a gap in the spectrum - simulations how-
ever show that it requires extremely short-ranged disor-
der and weak disorder can ensure that the gap is very
small. The Floquet phase itself is stable against weak
disorder due to its topological nature. Finally, band fold-
ing in combination with disorder scattering does provide
extra decay channels for the edge states in the low fre-
quency regime [48, 49]. However, these are suppressed
due to their multi-photon nature and/or the extreme
short-rangedness of disorder required.

Similarly to the electron-phonon case, electron-
electron interactions will generate apparent broadening
of the one-electron spectral lines at least at the perturba-
tive level; more sophisticated methods capture also quan-
tum fluctuations in interacting systems [50, 51]. While
the full effects of interactions are not calculable, it is
believed that the edge states that give rise to the orbital
magnetization signature are stable to interactions as they
are protected by a topological invariant, although this
line of argument has only been worked out fully in the
equilibrium case.

Our claim that the discussed perturbations and decay
mechanisms are unimportant for small enough pulse du-
rations is supported by experimental observations from
the MIT group of Nuh Gedik: the typical decay time
scales found on a topological insulator surface are of the
order of picoseconds [43], and the spectral density of
states of the Floquet phase, including the gap, was found
to be stable against these effects [22].

To summarize we have investigated the mean magne-
tization of periodically-driven systems and proposed a
protocol to realize and measure light-induced quantum
Hall-like edge states, overcoming the typically fatal prob-
lems connected to Floquet phases.
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