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We demonstrate that the ratchet effect – a radiation-induced direct current in a periodically
modulated structures with built-in asymmetry – is dramatically enhanced in the vicinity of the
plasmonic resonances and has a nontrivial polarization dependence. For a circular polarization, the
current component, perpendicular to the modulation direction, changes sign with the inversion of the
radiation helicity. In the high-mobility structures, this component might increase by several orders
of magnitude due to the plasmonic effects and exceed the current component in the modulation
direction. Our theory also predicts that in the dirty systems, where the plasma resonances are
suppressed, the ratchet current is controlled by the Maxwell relaxation.

Plasmonics – a new branch of electronics – is a rapidly
growing area of research with an extremely high poten-
tial for practical applications (see, for example, Refs. 1–7
and references therein). General ideas of plasmonics were
formulated about 20 years ago and have been attracting
much attention in the last decade. The main advantage of
plasmonics compared to conventional electronics is much
higher speed of operation due to high values of plasma
wave velocity, which is typically at least order of mag-
nitude larger than the saturated electron drift velocity.
Another advantage is very easy tunability by the gate
electrodes. These features are very promising for fabri-
cation of tunable electronic nanodevices capable to op-
erate in a frequency range unaccessible for conventional
electronic technologies. In particular, plasmonics is one
of the most expected candidates to close the famous ter-
ahertz (THz) gap in the electromagnetic spectrum.

In this context, plasmonic oscillations in the field effect
transistors (FETs) which are the basic elements of mod-
ern technology, are especially interesting and have been
recently a subject of a great number of studies focused
both on fundamental and practical aspects (see reviews
[8, 9] and references therein). An initial boost to this ac-
tivity was given by a prediction that a dc current in the
channel of a FET might become unstable with respect
to the generation of plasma oscillations [10]. Such oscil-
lations should lead to electromagnetic radiation at the
plasma frequency. Furthermore, the nonlinear properties
of the electron liquid in the FET channel can be used for
rectifying of the plasma oscillation induced by incoming
electromagnetic wave [11]. The plasma wave velocity s
in the FET channel can be tuned by the gate voltage.
Its typical value, s ∼ 108 cm/s, corresponds to the typi-
cal time scale of 10−12 s for the channel length ∼ 1 µm.
Thus, a FET in the plasma waves regime is expected to
provide a tunable coupling to the electromagnetic radia-
tion in the THz frequency range and can serve as a THz
emitter or detector.

There is, however, a serious obstacle for such applica-
tions. In fact, the coupling with a single FET turns out

to be quite weak. Indeed, the typical FET dimensions
are two or more orders of magnitude smaller than the
THz wavelength. Hence, a single device serves neither as
an effective source nor as a detector with sufficiently high
responsivity. The coupling significantly increases if there
is a dc current flowing in the FET channel [12]. However,
the dc current leads to the increase of the device noise.

One of the most promising ways to increase coupling
is to use periodic structures (FET arrays, grating gate
structures, and multi-gate structures). Such structures
attract growing interest as simple examples of plasmonic
crystals (PCs) [13–17]. They are much more appealing
than single FETs in view of possible plasmonics appli-
cations and already demonstrated excellent performance
as THz detectors [18–22], in a good agreement with the
numerical simulations [23–26]. The first observations of
the THz emission from the grating gate structures were
reported [27, 28]. However, there are also some diffi-
culties in providing of sufficiently strong dc response in
PCs. The point is that non-zero dc photoresponse re-
quires some asymmetry of the system, which would de-
termine the direction of the produced dc current. In a
single FET, such asymmetry might be induced by asym-
metrical boundary conditions on source and drain [10].
However, asymmetry of contacts to the whole PC does
not provide effective coupling mechanism. For coupling
being really noticeable, there should be strong built-in
asymmetry inside the unit cell of the PC.

The main purpose of this Letter is to propose an effec-
tive mechanism to induce strong asymmetry in the PC.
The mechanism is related to the so-called ratchet effect
[29–42]. The ratchet dc current j is induced by the elec-
tromagnetic wave impinging on the spatially modulated
system provided that the wave amplitude is also modu-
lated with the same wavelength but is phase-shifted in
space (see examples of such structures in Fig. 1). Al-
though this beautiful phenomenon has been known for
the long time (for review, see Refs. 33, 34, 38) its appli-
cation to plasmonics has yet not been well studied.

For spatially modulated heterostructures, the kinetic
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FIG. 1: Design of asymmetrical grating gate structures. Opti-
cal modulation can be achieved by fabrication of doping grat-
ing from the substrate side (a) [see (b) for side view] or shadow
grating from the gate side (c). Also one can use grating gate
that has alternating width and alternating transparency (d).

theory of the ratchet effect neglecting excitation of plas-
mons was developed in Refs. 35–40, 42. The theory pre-
dicts the Drude peak of the width 1/τ at ω = 0 in the de-
pendence j(ω) (here τ is the momentum relaxation time
and ω is the radiation frequency) and a smooth depen-
dence of j on ω for ω ≫ 1/τ in agreement with numerical
simulations [41].

Below, we demonstrate that the ratchet effect provides
a fundamental universal mechanism of strong coupling
of the electromagnetic radiation with plasmonic oscilla-
tions. The excitation of the plasmonic resonances dra-
matically increases the rectified dc current. We describe
the plasmonic-enhanced ratchet effect in the frame of
the hydrodynamic model valid for collision-dominated
regime, τee ≪ τ, where τee is the electron-electron scat-
tering time. This condition is easily realized for typical
experimental parameters (see the discussion of scatter-
ing rates and typical plasmonic parameters in Ref. 10).
We find that dc current j(ω) shows sharp resonances for
ω ≈ ωq provided that the plasmonic quality factor ωqτ
is sufficiently large (here ωq is the frequency of plasma
oscillations in the structure spatially modulated with the
wave vector q). Remarkably, not only the current com-
ponent in the modulation direction, jx (see Fig. 1), is
enhanced by the plasmonic resonances, but the trans-
verse component, jy , is also enhanced and, moreover, for
ωqτ ≫ 1 it becomes much larger than jx. Another re-
markable property is a strong polarization dependence
of jy. In particular, for a circularly polarized wave, jy
changes sign with the inversion of the helicity of polariza-

tion. For a single FET, the helicity-driven response was
measured [43] and explained theoretically [44] by assum-
ing a special type of the boundary conditions. The de-
pendence of the dc current on the helicity in the grating-
gate periodic structures was also discussed in Refs. 35–
38, 40, 42 within the approximation ignoring the plas-
monic effects. Helicity-driven photocurrents have been
measured in different materials [45–48] for purely elec-
tronic response only. In this Letter, we demonstrate that
plasmonic effects greatly enhance the helicity-dependent
part of the response. Exactly at the resonance, the trans-
verse component scales as jy ∝ (ωqτ)

2. Hence, in the
high mobility structures, the helicity-dependent trans-
verse ratchet might be several orders of magnitude larger
then the previously predicted non-resonant ratchet effect.
Even more interesting and unexpected is that for a cir-
cular polarization and for the external frequency away
from the resonance point, jy has a finite value in the bal-
listic limit, τ → ∞ : jy ∝ ω2

q/(ω − ωq)
2. In other words,

we predict a giant helicity-driven non-dissipative contri-
bution to the ballistic ratchet effect, which diverges at
ω → ωq.
The electron-electron interaction manifests itself in

nontrivial way even in the opposite limit, ωqτ ≪ 1, when
plasma waves are damped by impurity scattering. One
could expect that the response in this case would be given
by the Drude peak at ω = 0 with a width ∼ 1/τ in accor-
dance with Refs. 35–38, 40, 42 . As will be shown, sur-
prisingly, the width of the peak is much narrower and is
given by the Maxwell relaxation rate 1/τM = ω2

qτ ≪ 1/τ.
Let us now specify the model. We will discuss the

radiation-induced photocurrent in a structure with a
common channel and a large-area grating gate (see
Fig. 1). This structure represents a PC created by a mod-
ulated gate-to-channel potential. The ratchet dc current
arises [35–42] as a result of a combined action of a static
spatially-periodic in-plane potential

V (x) = V0 cos(qx) (1)

and the electric field of incoming radiation spatially mod-
ulated by a grating lattice with the same q [49]:

E(t, x) =
[

1 + ĥ cos(qx+ ϕ)
]

e(t). (2)

Here e(t) =
(

ex(t), ey(t)
)

is in-plane oscillating vector
with the components depending on the polarization of
the wave, and ĥ is diagonal 2×2 matrix with the diagonal
components hx and hy. These components describe the
modulation depth of ex and ey, respectively.
The existence of non-zero average

〈

E(E∇V )
〉

t,x
∝

sinϕ, implies that dc current j = (jx, jy) controlled by
the phase shift ϕ between V (x) and E(t, x) might appear
in the 2D liquid: j ∝ sinϕ. This phase shift provides the
required asymmetry, so that the current reverses its di-
rection when ϕ is incremented by π.
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We consider the electron liquid in 2D channel in the
external field (2) of general polarization:

ex = E0x cosωt, ey = E0y cos (ωt+ θ) . (3)

The case |E0x| = |E0y|, θ = ±π/2 corresponds to the
circular polarization. In the absence of perturbations
(V = 0, E = 0), the 2D electron concentration N = N0

is controlled by the gate-to-channel voltage Ug :

N0 =
CUg

e
. (4)

Here C = ε/4πd is the gate-to-channel capacitance per
unit area, ε is the dielectric constant, d is the spacer
distance, and e > 0 is the absolute value of the electron
charge. For smooth perturbations with qd ≪ 1 equation
(4) is also valid and relates the local concentration in
the channel N = N(x, t) and the local gate-to-channel
swing. The total electric field in the channel is given
by the sum of the external radiation field, static built-in
field, and field arising due to the density perturbation:
Etot = E −∇V + (e/C)∇N.
The quasiclassical dynamics of electrons in the channel

obeys the kinetic equation:

∂f

∂t
+ v∇f +

[

a−
e2

mC
∇N

]

∂f

∂v
= Stf, (5)

where a = − e
m

(

E − ∇V
)

, and Stf is the collision in-
tegral including impurity and phonon scattering as well
as electron-electron scattering. We study electron liq-
uid within the hydrodynamic approximation assuming
the following hierarchy of the scattering times: τee ≪
τ ≪ τph, where τph is the electron-phonon scattering
time. These inequalities allows one to search a so-
lution as a Fermi-Dirac function in the moving frame

f = 1
/[

em(v−v)2/2T−µ/T + 1
]

. This function depends

on the local hydrodynamic parameters: velocity v =
v(r, t), chemical potential µ = µ(r, t), and temperature
T = T (r, t). In what follows, we set µ ≫ T. This yields
N ≈ νµ, where ν = m/π~2 is the density of states. Hav-
ing in mind that the electron-electron collisions conserve
the particle number, momentum and energy, we multiply
Eq. (5) by 1, mv and mv2/2 and integrate over d2v, thus
obtaining the system of hydrodynamic equations:

∂N

∂t
+

∂

∂x
(Nv) = 0, (6)

∂v

∂t
+ (v∇)v +

v

τ
= a−

e2

mC
∇N −

∇W

mN
, (7)

C

[

∂T

∂t
+ div(Tv)

]

= N

(

T0 − T

τph
+

mv2

τ

)

, (8)

where W =
∫

dǫ ǫ ν[e(ǫ−µ)/T +1]−1 ≈ N2/2ν+ νT 2π2/6
is the system energy per unit area in the moving frame,
T0 is the lattice temperature and C = νTπ2/3 is the

heat capacity of the 2D degenerate electrons. Above, we
implicitly assumed that τ is energy independent, which
is the case for the short-range impurity potential.

Equation (8) is coupled to Eqs. (7) and (6) by the
thermoelectrical force π2ν∇T 2/6mN = π2T∇T/3mµ,
whose contribution is suppressed in the highly degen-
erate electron gas. Let us estimate this force in the
lowest order in T/µ. To this end, we neglect l.h.s. of
Eq. (8) (which is small compared to its r.h.s. due to
the same parameter T/µ), thus arriving to a balance
equation between Joule heating and phonon cooling:
mv2/τ = (T −T0)/τph. Hence, the thermoelectrical force
becomes (π2Tτph/3µτ)∇v2. Comparing this force with
the term (v∇)v, we conclude that the former is negli-
gible provided that µ/T ≫ τph/τ. Assuming that this
inequality is fulfilled, we are left with the system of the
hydrodynamic equations for velocity and concentration:

∂n

∂t
+

∂vx
∂x

= −
∂(nvx)

∂x
, (9)

∂vx
∂t

+
vx
τ

+ s2
∂n

∂x
= ax − vx

∂vx
∂x

, (10)

∂vy
∂t

+
vy
τ

= ay − vx
∂vy
∂x

, (11)

where n = (N −N0)/N0.

The r.h.s. of Eqs. (9), (10), and (11) include pertur-
bation a as well as nonlinear terms. Assuming that a is
small, one can search a solution as a perturbation series
over a : n = n(0,1)+n(1,0)+ . . . , v = v(0,1)+v(1,0)+ . . .
Here the two indices denote the order of smallness with
regard to e and V0, respectively. The nonzero dc current
j = −eN0

〈

(1 + n)v
〉

t,x
, appears in the third order with

respect to a (second order in e and first order in V0):
j ≈ j(2,1) (here 〈. . .〉t,x stands for time and space aver-
aging [51]). Importantly, Eqs. (9) and (10) can be solved
independently from the decoupled Eq. (11) [the latter can
be solved after the solution of Eqs. (9) and (10) is found].
The details of the calculations are presented in Ref. 52.
Here we estimate one of the terms contributing to the

j
(2,1)
x in order to clarify the key points of derivation.

The static potential (1) leads to density modula-
tion n(0,1) ∝ V0 cos(qx). The homogeneous part of the
field (2) does not affect concentration but leads to the

Drude peak in the velocity: v
(1,0)
x ∝ E0x[e

iωt(iω +
1/τ)−1 + h.c.] (we omit here inhomogeneous contribu-
tion). Substituting these equations into the nonlin-

ear term ∂
[

n(0,1)v
(1,0)
x

]

/∂x in the r.h.s. of Eq. (9),

and solving Eqs. (9) and (10) we find that veloc-
ity in the order (1,1) exhibits plasmonic resonance as

well as the Drude peak: v
(1,1)
x ∝ E0xV0 cos(qx) ×

[

eiωt(iω + 1/τ)−1(ω2 − ω2
q − iω/τ)−1 + h.c.

]

. Here ωq =
sq is the plasma wave frequency. In turn, the nonhomo-
geneous part of the field (2) also excites the plasmonic
resonance, thus leading to density correction n(1,0) ∝
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E0xhx sin(qx+ϕ)
[

eiωt(ω2 − ω2
q − iω/τ)−1 + h.c.

]

. Com-
bining these equations, we find the non-vanishing correc-
tion to the dc current in the order (2,1):

j(2,1)x ∝
〈

n(10)v(1,1)x

〉

t,x
∝

τ

1 + ω2τ2
sinϕ

(ω2 − ω2
q)

2 + ω2/τ2
.

A more detailed calculations [52] yield:

jx = j0x
2ω5

qτ

(1 + ω2τ2)[(ω2 − ω2
q)

2 + ω2/τ2]
, (12)

jy = j0y
ω3
q [(ω

2 − ω2
q)τ cos θ + ω sin θ]

(ω2 − ω2
q)

2 + ω2/τ2
. (13)

Here j0x = e4V0N0E
2
0xhx sinϕ/(4m

3s3ω2
q) and j0y =

−e4V0N0E0xE0yhy sinϕ/(4m
3s3ω2

q) are frequency- and
disorder-independent currents that are proportional to
the asymmetry factor sinϕ and are sensitive to the po-
larization of the radiation. We note that the finite value
of jy implies that electric circuit is closed in y direction.
For a disconnected circuit, the voltage would develop in-
stead, which is analogous to the Hall voltage and, there-
fore, depends on the geometry of the system.

FIG. 2: Frequency dependence of current components jα
[α = (x, y)] in the resonant (upper panel, ωqτ = 10) and
non-resonant (lower panel, ωqτ = 0.1) cases for circular po-
larization (θ = π/2, E0x = −E0y, hx = hy.)

As seen from Eqs. (12) and (13), there are two different
regimes depending on the plasmonic quality factor ωqτ.
For ωqτ ≫ 1, the response is peaked both at ω = 0
and at ω ≃ ωq within the frequency window ∼ 1/τ. In

the vicinity of the plasmonic resonance ω ≃ ωq, one can
simplify Eqs. (12) and (13):

jx ≈ j0x
2ωqτ

1 + 4(ω − ωq)2τ2
, (14)

jy ≈ j0y
ω2
qτ

2[sin θ + 2(ω − ωq)τ cos θ]

1 + 4(ω − ωq)2τ2
. (15)

In the opposite non-resonant case, ωqτ ≪ 1, we find

jx ≈
2ωqτj0x
1 + ω2τ2M

, jy ≈
ωqτ(ωτM sin θ − cos θ)j0y

1 + ω2τ2M

where the width of the response, 1/τM = ω2
qτ, is deter-

mined by the inverse time of the charge spreading at the
distance ∼ q−1 (Maxwell relaxation time). Surprisingly,
this width is much smaller, than the inverse momentum
relaxation time: 1/τM ≪ 1/τ. In other words, unexpect-
edly, the peak turns out to be much narrower than the
Drude peak.
In the resonant regime j is much larger than in the non-

resonant case (due to the largeness of ωqτ) and shows a
sharp resonant dependence on ω (see Fig. 2). Hence, the
plasmon excitation leads to a dramatic enhancement of
the ratchet effect. Note that for θ = ±π/2, jy changes
its sign with the sign of θ, i.e. at switching between right
and left circular polarizations. Thus, our results predict
strong helicity effect - the circular polarization of the in-
cident light determines the direction of jy. Remarkably,
for clean systems, the transverse component of the cur-
rent, jmax

y /j0y ∼ (ωqτ)j
max
x /j0x, might be much larger

than the longitudinal one provided that ωqτ is sufficiently
large. For ω = ωq, we find jy ∝ (ωqτ)

2. Therefore,
in clean systems, the transverse current might increase
by several orders of magnitude. We also see that for
θ = ±π/2 transverse current remain finite in the dissipa-
tionless limit τ → ∞ : jy → ±j0yω

3
qω/(ω

2−ω2
q)

2. Hence,
we predict the existence of a large helicity-dependent
non-dissipative contribution to the ratchet effect which
infinitely increases with approaching to the resonsnce.
To conclude, we predicted a dramatic enhancement of

the ratchet effect due to the excitation of plasmonic res-
onances. We identified a helicity-dependent contribution
to the ratchet current and found that this contribution
increases with decreasing the static disorder and satu-
rates in the limit τ → ∞. We also demonstrated that the
non-resonant ratchet current is sharply peaked at zero
frequency within the width on the order of the inverse
Maxwell relaxation time. The results are quite general
and can be applied for conventional semiconductor struc-
tures based on GaAs and Si as well as for novel materials
such as graphene and other van der Waals 2D materials.
Hence, our work ”builds a bridge” between fundamen-
tal ratchet effect and various applications in the area of
rapidly growing plasmonics.
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