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We propose a self-similar kinetic theory of thermal conductivity in a magnetized plasma, and
discuss its application to the solar wind. We study a collisional kinetic equation in a spatially
expanding magnetic flux tube, assuming that the magnetic field strength, the plasma density, and
the plasma temperature decline as power laws of distance along the tube. We demonstrate that the
electron kinetic equation has a family of scale invariant solutions for a particular relation among
the magnetic, density, and temperature scaling exponents. These solutions describe the heat flux
as a function of the temperature Knudsen number γ, which we require to be constant along the
flux tube. We observe that self-similarity may be realized in the solar wind; for the Helios data
0.3 − 1 AU we find that the scaling exponents for density, temperature, and heat flux are close to
those dictated by scale invariance. We find steady-state solutions of the self-similar kinetic equation
numerically, and show that these solutions accurately reproduce the electron strahl population seen
in the solar wind, as well as the measured heat flux.

PACS numbers: 96.50.Ci, 95.30.Qd, 52.25.Xz, 52.25.Dg

Introduction.– In a plasma where f(v) is the local
electron velocity distribution function, the heat flux
q =

∫

(mv2/2)vfd3v describes the flow of electron ki-
netic energy [1]. Solving for q in terms of other bulk
plasma parameters (density, temperature) is important
for understanding energy transport. In studies of the so-
lar wind, the heat flux is often prescribed as a step in
obtaining profiles for the solar wind speed [2, 3], as a
player in the steady-state global energy balance [4], and
as a source of free energy that drives instabilities [5].

Spitzer & Härm [6] solved the kinetic equation for f(v)
in the presence of a temperature gradient, using pertur-
bation theory. This yielded an expression for the heat
flux in the absence of a net electric current:

qsh = −κ‖∇‖T. (1)

Here κ‖ ∝ T 5/2 is the thermal conductivity parallel to
the magnetic field.
The Spitzer-Härm relation applies for collisional plas-

mas, where the collisional mean free path λmfp is suffi-
ciently small. The degree of collisionality is parametrized
by the temperature Knudsen number:

γ = −T 2(d lnT/dx)/(2πe4Λn) ∼ λmfp/LT , (2)

where LT = |d lnT/dx|−1, Λ is the electron Coulomb log-
arithm, and x is the direction of the temperature varia-
tion. If γ ≪ 1, the plasma is collisional and equation (1)
applies, otherwise it is weakly collisional or collisionless

and the description of q becomes more complicated. In
particular, the Spitzer-Härm expansion is formally valid
for γ . 0.01, while for larger values a population of “ther-
mal runaway” electrons may contribute to the heat flux

[e.g., 7, 8]. Thus in a plasma with a temperature gra-
dient, a population of electrons is locally detected that
originated from distant, hotter regions. In the limiting
case γ & 1 the collisionless or “free-streaming” heat flux
is given by the thermal energy density advected at the
thermal speed, q ∼ nvthT [7, 9].

Laboratory and astrophysical applications, however,
require modeling the heat flux outside the limiting cases
discussed above. For example, [10] proposed a formula
q(x) =

∫

qsh(x
′)w(x, x′)dx′, that is widely used in the

laser-plasma interaction community [e.g., 11–13]. The
kernel w(x, x′) is a phenomenological expression chosen
so as to give results that match with Fokker-Planck sim-
ulations of a weakly collisional plasma. A more rigorous
but mathematically involved approach [14] employed a
simplified kinetic equation in a 1D spatial geometry, and
expanded the perturbation from a Maxwellian distribu-
tion in orthogonal polynomials. In recent years, kinetic
models of the solar corona and the solar wind have been
developed that include the effects of Coulomb collisions,
where the spatial coordinate is the heliocentric distance
[15–19]. In these models, detailed radial profiles of the
bulk plasma parameters are prescribed, and the distribu-
tion function is found numerically.

Recent measurements of the electron distribution func-
tion made by the Wind satellite’s electrostatic analyzers
EESA-L and EESA-H [20] have revealed a functional re-
lationship between q and γ in the range of Knudsen num-
bers, 0.01 . γ . 1, where the analytic treatment of the
heat flux is especially complicated. This suggests that γ
is the fundamental parameter needed to predict the heat
flux and the electron distribution function in the weakly
collisional solar wind.
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In this work, we propose that the kinetic equation
in a magnetized plasma where the large-scale param-
eters (temperature, density, & magnetic field) exhibit
power law behaviour, has scale-invariant “self-similar”
solutions. These solutions are more transparent physi-
cally and easier to construct numerically than standard
perturbative solutions. The requirement of scale invari-
ance dictates that γ = const., a condition that is also
consistent with solar wind measurements.

The self-similar kinetic theory of heat conduction was
first proposed in [8], which allowed for calculation of
the electron distribution function in a non-magnetic one-
dimensional case T = T (x), n = n(x) [21]. A class of
self-similar steady-state solutions of the kinetic equation
was found in the form:

f(v, x) = NF (v/vth(x))/T (x)
α
, (3)

where N is a constant set by the normalization
∫

f(v)d3v = n,
∫

F (u)d3u = 1. The parameter α de-
pends on the relative scaling of density and temperature.

In this work, we develop a 3D self-similar kinetic
theory that includes a spatially expanding magnetic field
B = B(x)x̂. We obtain the electron distribution function
and the heat flux as functions of the Knudsen number
γ, and demonstrate that they are in good agreement
with solar wind measurements. Our results provide an
effective new way of modeling electron physics in weakly
collisional astrophysical and space plasmas.

Self-similar kinetic equation for magnetized plasma.—
Consider a cylindrically symmetric magnetic flux tube,
expanding along the x̂ direction. When the plasma col-
lision rate is much smaller than the gyrofrequency, the
time evolution of the electron distribution function f is
governed by the drift kinetic equation [e.g., 22]. We as-
sume the E×B drift is negligible for the transport along
the flux tube. We also neglect the solar wind velocity
vsw, since we are interested in a weakly collisional case,
γ & 0.01, when significant contribution to the heat flux
comes from the energetic electrons v & vth ≫ vsw. The
drift kinetic equation can now be written in terms of t,
x, v, µ (µ = v · x̂/v), and the collision operator Ĉ(f):

∂f

∂t
+ µv

∂f

∂x
− 1

2

d lnB

dx
v(1− µ2)

∂f

∂µ
−

− eE‖

m

[

1− µ2

v

∂f

∂µ
+ µ

∂f

∂v

]

= Ĉ(f). (4)

We now assume power-law variations of physical param-
eters in the x-direction: B ∝ xαB , n ∝ xαn , T ∝ xαT . It
can be checked that the equation has a self-similar form
in the case γ(x) ≡ const. In what follows we are inter-
ested in the steady-state case ∂f/∂t = 0. As a result,
equation (4) can be rewritten in terms of the two dimen-

sionless variables µ and ξ = (v/vth)
2 ≡ mv2/(2T ):

− γ

[

αµF + µξ
∂F

∂ξ
+
αB

2
(α+ 1/2)(1− µ2)

∂F

∂µ

]

+

+ γE

[

µ
∂F

∂ξ
+

1− µ2

2ξ

∂F

∂µ

]

+ Ĉ(F ) = 0, (5)

where γE = E‖eT/(2πe
4Λn). Although the Landau colli-

sion operator can also be written in a self-similar form, for
simplicity we use the linearized collision operator, valid
for ξ ≫ 1, defining β ≡ (1+Zeff)/2 for background ions
with total effective charge Zeff [23–25]:

Ĉ(F ) =
1

ξ

[

∂F

∂ξ
+
∂2F

∂ξ2

]

+
β

2ξ2
∂

∂µ

(

1− µ2
) ∂F

∂µ
. (6)

The terms in Ĉ(F ) with derivatives of ξ are due to
energy exchange with the thermal electrons, while the
terms with derivatives of µ describe pitch angle scatter-
ing from the thermal electrons and ions. The require-
ments γ = const. and the self-similar form of f (equation
3) give the following restriction for the allowed scaling
powers α, αn, and αT :

α =
3

2
− αn

αT
=

1

αT
− 1

2
. (7)

Interestingly, this relation has a solution n ∝ x−2 and
T ∝ x−1/2, which also implies q ∝ x−11/4 [8, eq. 5]. Such
profiles are close to the typically measured variations of
n, T, q with heliospheric distance [26–28].

Runaway electrons.—The presence of density and tem-
perature gradients in a magnetized plasma leads to the
formation of a runaway electron population [e.g., 7]. A
spatially expanding magnetic field focuses this popula-
tion into a narrow field-aligned beam. In the limit µ ≈ 1,
ξ ≫ 1 we approximate (1−µ2) ≈ 2(1−µ), and neglect the
energy exchange terms in the collision operator. With the
definitions z = ξ2(1−µ), η = ln ξ, α′ = [2−(α+1/2)αB],
and F = φ(η, z), equation (5) reduces to:

γαφ+ γ
∂φ

∂η
+ {γα′z − β} ∂φ

∂z
= βz

∂2φ

∂z2
. (8)

The solution of this advection-diffusion-type equation has
the form:

F (ξ, µ) ∼ Cξα
′−α exp

{

γα′ξ2(1− µ)

β

}

, (9)

where the constant C can be found from matching
with the full solution at ξ ∼ 1. The full solution is
constructed numerically in the next section.

Numerical solution.—Eq. (5) can be solved once the
two parameters of the system, α and αB, are specified.
This equation has an important sub-family of solutions
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that can be found numerically in a non-perturbative fash-
ion. We use the method of relaxation and add to the left-
hand side of Eq. (5) a time dependent term ξ−1/2∂F/∂τ .
We then would like to view the time dependent Eq. (5) as
a formal Fokker-Planck equation of some stochastic pro-
cess [e.g., 29]. This is possible to do if the norm of the
function is preserved,

∫

F
√
ξdµdξ = const. The norm

preservation leads to the extra condition on the allowed
parameters, αB = (2− α)/(α+ 1/2), which defines the
one-parameter sub-family of solutions.
For a particular illustration, consider a radially ex-

panding magnetic flux tube, say modeling the inner he-
liosphere, with αB = −2. In this case, the other scal-
ing exponents are found as α = −3, and αn = −1.8,
αT = −0.4, which are roughly consistent with power
laws observed in the solar wind, as discussed in previ-
ous sections. Defining the function ψ(µ, ξ, τ) ≡ ξ1/2F ,
the evolution equation can be rewritten:

∂ψ

∂τ
=

∂

∂ξ

[

−γµξ3/2ψ + γEµ
√

ξψ +
ψ√
ξ

]

+

+
∂

∂µ

{[

−5

2
γ(1− µ2)

√

ξ +
γE(1− µ2)

2
√
ξ

+
βµ

ξ3/2

]

ψ

}

+

+
∂2

∂ξ2
ψ√
ξ
+

∂2

∂µ2

[

β(1 − µ2)

2ξ3/2
ψ

]

. (10)

The function ψ can be constructed using the Langevin
method. In this method, the µ-ξ phase space is populated
by a large number of points, each evolving according to
the stochastic ordinary differential equations:

dξ

dτ
= γµξ3/2 − γEµ

√

ξ − 1√
ξ
+

√
2

ξ1/4
νξ(τ), (11)

dµ

dτ
=

5

2
γ(1− µ2)

√

ξ

− γE(1− µ2)

2
√
ξ

− βµ

ξ3/2
+

√

β(1− µ2)

ξ3/4
νµ(τ), (12)

where νξ(τ), νµ(τ) are normally distributed in-
dependent random variables (random noises)
with mean of zero and standard deviation of
〈νξ(τ)νξ(τ ′)〉 = 〈νµ(τ)νµ(τ ′)〉 = δ(τ − τ ′). Equations
(11-12) are solved using the forward Euler finite-
difference method with the Ito prescription for the noise
discretization [29]. To satisfy the ambipolarity condition,
the electric field γE is adjusted at each time step so
as to nullify the (dimensionless) current

∫

ψµξ1/2dξdµ.
The function ψ(µ, ξ) is approximated by a 2D histogram
of the points in phase space with the normalization
π
∫

ψ(µ, ξ)dξdµ = 1.

Applications to the solar wind.—The solar wind elec-
tron velocity distribution function (eVDF) was mea-
sured at heliocentric distances 0.3 − 1 AU by the E1
plasma experiment onboard the Helios 1 satellite [30].
We fit each eVDF in our data set to a function

FIG. 1. 2D histogram of γ versus heliocentric distance r,
derived from fits to Helios eVDF data. Each column is nor-
malized by its peak, to bring out the functional dependence.
We observe γ(r) ≈ const., required in order to apply the self-
similar theory.

fm(v⊥, v‖) = fc + fh + fs, which represents a sum of the
well-known core, halo, and strahl subpopulations [26].
We adopt a bi-Maxwellian fc, bi-kappa fh [31], and
a modified bi-kappa function fs that is diminished on
one side [32]. We disallow perpendicular bulk drifts,
v⊥,c = v⊥,h = v⊥,s = 0. Our fitting procedure is de-
scribed in detail in [33].

For each measured Helios eVDF, γ is computed from
equation (2), where T and n are the core values Tc,
nc obtained from the least-squares fit. Since the par-
allel and perpendicular core temperatures may differ,
we define T ≡ Tc = (Tc‖ + 2Tc⊥)/3. In order to cal-
culate dT/dx from our measurements, we must pre-
scribe how x varies with heliocentric distance r. We
assume that the flux tube follows the average Parker
spiral: x(r) =

∫

dr/ cos θP , where tan θP (r) = r/r0 and
r0 = 1 AU [34]. We can then fit a power law to our ob-
served T (x), which yields αT = −0.6 ± 0.1. To verify
our assumption γ ≈ const., we plot a 2D histogram of γ
versus r in figure 1. At all distances 0.3− 1 AU the most
probable value is γ ≈ 0.2.

In Figure 2, we plot parallel and perpendicular cuts
of the distribution function obtained from the Helios
data and from our solution. Because the E1 detector
has a broad field of view, it tends to smear out narrow
features in the distribution function such as the strahl;
we denote the resulting convoluted (self-similar) func-
tion as F ∗(v/vth). In order to model F ∗ using our nu-
merical solution F of equation 5, we apply the convolu-
tion F ∗ = (

∫

R(φ, θ)FdΩ)/
∫

R(φ, θ)dΩ, where R(φ, θ) =
[H(φ+∆φ)−H(φ−∆φ)] exp{−((θ−π/2)/∆θ)2} and H
is the Heaviside step function. Here φ and θ are spher-
ical coordinates in the Helios spacecraft frame, where
the rotation axis defines the z-direction; the nominal
look direction of the detector (µ = 1, 0 for parallel, per-
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FIG. 2. Perpendicular and parallel cuts of F ∗ from the He-
lios measurements (lines) and Langevin simulations (dots).
The Helios data are averaged into logarithmically spaced bins
10−13/8 < γ < 10−7/8. The numerical solutions are found
with γ chosen at the logarithmic center of a bin.

pendicular cuts) corresponds with φ = 0, θ = π/2. In
accordance with the detector description [26], we set
∆φ = 15◦, ∆θ = 11.4◦. We plot cuts of F ∗ from the
numerical solution of our model as dots in figure 2, for
γ = 10−3/2, 10−5/4, 10−1.

The function F ∗ is computed from each ob-
served Helios distribution function fm using
F ∗(v/vth) = fm(v)v3th/n (note that N = nTα/v3th,
from the normalization of F ). We take the parallel and
perpendicular cuts of F ∗ obtained from our fits to the
Helios data, and average them into 3 logarithmically
spaced bins in the interval 10−13/8 < γ < 10−7/8. These
are plotted as lines in figure 2. We see good agreement
between the data and theory in the core, as should be
expected, but also a striking agreement in the strahl
population. The halo population appears not to be
described by our solutions.

The recent results of [20], which demonstrate
the transition between the Spitzer-Härm-like and
collisionless heat flux regimes in the solar wind
at 1 AU, are reproducible with the Helios data

measured 0.3-1 AU. We adopt the same defini-
tions: q0 = (3/2)nvthT [35], qsh = 3.16nTτe/m [6, 36],
qsh/q0 = 1.07λmfp/LT = 2.84γ [37]. We plot a 2D his-
togram of the variation of q/q0 with λmfp/LT in figure
3. For reference, we show the Spitzer-Härm-like scaling
as a solid line.

The dots in figure 3 are predictions of our model.
For each steady-state distribution F , a dimensionless
heat flux can be calculated Q ≡

∫

u‖u
2F (u)d3u, where

u = v/vth. From our definitions it can be quickly
derived q/q0 = 2Q/3. Using this and λmfp/LT = 2.656γ
gives the coordinates of the dots in figure 3. Our theory
is consistent with the heat flux measurements.

Discussion and conclusions.—We have demonstrated
that in a magnetic flux tube where γ(x) = const. and
the density, temperature, and magnetic fields vary as
power laws, the steady-state electron kinetic equation ad-
mits solutions F (µ, ξ) that depend on just two self-similar
variables. We found that the electron distribution func-
tions measured by the Helios satellite closely match many
of the predictions of our theory. Most notably, the theory
is able to describe the transition from the Spitzer-Härm-
like to the collisionless regime, recently observed by [20]
in the interval 0.01 . γ . 1. It also shows that the
strahl population consists of thermal runaway electrons
that originated from hotter, denser regions, which are
focused by the magnetic field. We note that the halo
population does not follow the self-similar solution; it is
observed to vary in a non-self-similar fashion in the inner
heliosphere, while self-similarity is a better approxima-
tion for the strahl [31, fig. 5], [32, fig. 6]. Physics be-
yond the scope of this letter may be required to explain
the halo.

For finite systems, it is necessary to restrict the domain
of self-similarity to a range in energy ξ < ξmax, since run-
away strahl electrons can only be supplied up to energies
comparable to the thermal energy at the higher temper-
ature boundary (such an effect may be witnessed in the
simulations of [18, figure 5]). Restricting the self-similar
energy domain is also necessary from a theoretical stand-
point [8]: multiplying Eq. (9) with µξ3/2 and integrating
up to infinite energies, we find that the heat flux formally
diverges for our assumed parameters. The temperatures
at the coronal base are about 20 times higher than in the
solar wind at 1 AU. We set ξmax = 50 when calculating
q in figure 3, which realistically captures the extent of
the strahl observed by Helios. For comparison, the up-
per and lower error bars indicate the heat flux computed
by using ξmax = 100 and ξmax = 25, respectively.

In general, equation (5) admits a two-parameter fam-
ily of solutions, parametrized by the scaling exponent of
the magnetic field and the temperature along the flux
tube. Depending on these parameters, other solutions
may provide a better match to different laboratory or as-
trophysical systems. We plan to study the solutions of
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FIG. 3. 2D histogram of q/q0 versus heliocentric distance
λmfp/LT , derived from fits to Helios eVDF data, correcting
for the Parker spiral angle and assuming αT = −2/5. Each
column is normalized by its peak, to bring out the functional
dependence. The Spitzer-Härm prediction is shown as a line.
Results of our numerical solutions are shown as dots.

Eq. (5) in fuller generality elsewhere.
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