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We investigate a hybrid system composed of ultracold Rydberg atoms immersed in an atomic
Bose-Einstein condensate (BEC). The coupling between Rydberg electrons and BEC atoms leads to
excitations of phonons, the exchange of which induces Yukawa interaction between Rydberg atoms.
Due to the small electron mass, the effective charge associated with this quasi-particle-mediated
interaction can be large. Its range, equal to the BEC healing length, is tunable using Feshbach
resonances to adjust the scattering length between BEC atoms. We find that for small healing
lengths, the distortion of the BEC can “image” the Rydberg electron wave function, while for large
healing lengths the induced attractive Yukawa potentials between Rydberg atoms are strong enough
to bind them.

Impurities in a Bose-Einstein condensate (BEC) have
motivated the investigation of a wide range of phenom-
ena. For example, a single impurity can probe superflu-
idity [1–3], while an ionic impurity can form a mesoscopic
molecular ion [4]. Due to the self-energy induced by
phonons (BEC excitations), a neutral impurity can self-
localize in BECs [5–7], sheding light on polaron physics
[8, 9]. Phonon exchange induces an attractive Yukawa
potential between impurities [10, 11], leading to the so-
called “co-self-localization” [12] and the formation of bi-
and multi-polarons [13]. Recent experiments, where a
BEC atom is excited into a Rydberg state [14], open the
door to explorations of the electron-phonon coupling in
ultracold degenerate gases, a phenomenon reminiscent of
the formation of Cooper pairs of repelling electrons in
superconductivity [15].
In this Letter, we study Rydberg atoms immersed in a

homogeneous BEC (Fig. 1(a)). Rydberg atoms consist of
an ion core and a highly excited electron with its oscilla-
tory wave function Ψe extending to large distances of the
order of ∼n2a0 (n: principle quantum number, a0: Bohr
radius). In contrast to “traditional” neutral impurities
in a BEC [10–13], the interaction between Rydberg and
BEC atoms is dominated by the electron-atom interac-
tion, which allows stronger impurity-BEC coupling and
independent control of interaction between BEC atoms
with Feshbach resonances. In addition, the large extent
of Ψe makes it possible to “imprint” the electronic wave
function on BEC density modulations.
As pointed out by Fermi [16], the interaction between

the quasi-free electron at x and a ground state atom at
r can be approximated at low scattering energies by a
contact interaction parametrized by an energy-dependent
s-wave scattering length As (k) = −k−1 tan δs(k),

Vs (x, r) =
2π~2

me
As [k (r)] δ

(3) (x− r) . (1)

While the s-wave approximation is useful for qualitative
analysis, we include higher-partial wave contributions for
quantitative results [17]. The local wave number k(r) is

~
2k(r)2

2me
= − Ry

(n− δℓe)
2
+

e2

4πǫ0r
, (2)

FIG. 1: (Color online) (a) Sketch: two Rydberg atoms im-
mersed in a BEC exchange phonons: |Ψe|

2 is represented by
the surface inside each sphere. (b) |Ψe|

2 along with the inter-
action potential curve within the s-wave approximation.

where Ry is the Rydberg constant, ǫ0 the vacuum per-
mittivity, e and me the charge and mass, respectively,
of the electron with angular momentum ℓe and quantum
defect δℓe . For low-ℓe states, Eq. (1) gives an effective
interaction between Rydberg and ground state atoms as

VR(r) ≈
2π~2As [k (r)]

me
|Ψe(r)|2, (3)

which leads to an attraction and formation of ultra-long-
range Rydberg molecules for As < 0 [18]. The elec-
tron density and corresponding oscillatory potential are
sketched in Fig. 1(b) for a Rydberg ns (ℓe = 0) state.
High-ℓe states with negligible δℓe are nearly degenerate,
and their coupling gives electronic wave functions with
complex quantum interference patterns. For alkali met-
als (e.g., Rb or Cs), these interactions can support very
extended bound “trilobite states”, that possess a strong
permanent dipole moment. The observation of “trilobite-
like states” [19–23], has motivated the studies of the p-
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wave electron (leading to “butterfly states” [24]), and
Rydberg electrons scattering off a perturber with a per-
manent dipole moment [25].
Here, Rydberg electrons interact with the many-atom

BEC, resulting in collective excitations (phonons). The
phonon exchange in a BEC leads to a Yukawa potential.
We find two regimes based on the BEC healing length ξ.
For small ξ, the Yukawa potential is short-ranged, and
distorts the BEC locally, “mapping” |Ψe|2 onto the BEC
density. For large ξ, the Yukawa potential is long-ranged
and can bind Rydberg atoms together.
We first consider a homogeneous BEC in the absence

of impurities, described by the Hamiltonian

HBEC =
∑

k

~
2k2

2mB
c†
k
ck +

uB

2ΩV

∑

kpq

c†
k
c†pcqck+p−q, (4)

where uB = 4π~2aB/mB is the coupling between the
atoms of mass mB and scattering length aB, ΩV is the
quantization volume, and c†k (ck) is the creation (anni-
hilation) operator of bosonic atoms with momentum k.
If most atoms occupy the ground state (k=0), one can

replace c†0 and c0 by
√
N0 and expand Eq. (4) in de-

creasing order of N0. The number of atoms is given by
N = N0 +

∑

k 6=0 c
†
kck. By keeping terms of the order√

N0 or higher, HBEC can be diagonalized via the Bogoli-
ubov transformation c†q = uqb

†
q + vqb−q. The resulting

effective Hamiltonian is HBEC =
∑

q ~ωq(b
†
qbq + 1/2),

where ~ωq = (ǫ2q + 2uBρBǫq)
1/2, with ǫq = ~

2q2/2mB

and the BEC number density ρB = N/ΩV . The Bo-
goliubov operator b†q (bq) creates (annihilates) a quasi-
particle (or phonon) of momentum q when applied to the
ground state |0〉: b†q|0〉 = |q〉. The local density operator

ρ̂ (r) = Ω−1
V

∑

p,q
eiq·rc†p+qcp becomes

ρ̂ (r) ≈ N0

ΩV
+

√
N0

ΩV

∑

q 6=0

eiq·r (uq + vq)
(

b†q + b−q

)

, (5)

and the interaction between a Rydberg electron and BEC
atoms HINT =

∫

d3rρ(r)VR(r) is

HINT ≈ N0

ΩV
V0 +

√
N0

ΩV

∑

q 6=0

(uq + vq)
(

b†q + b−q

)

Vq, (6)

where Vq =
∫

d3rVR(r)e
iq·r is the Fourier transform of

VR(r) in Eq. (3). The first and second order corrections
to the ground state energy are E(1) =

∫

d3rρBVR(r) and

E(2) = − mB

2π~2

∫

d3rd3r′ρBVR(r)
e−|r−r′|/ξ

|r− r′| VR(r
′), (7)

where we take the thermodynamic limit of Ω−1
V

∑

q →
(2π)−3

∫

d3q and integrate over q. At this level of ap-
proximation, N0 can be replaced by N .

Using VR(r) from Eq. (3), and assuming ρB constant
(homogeneous BEC), E(1) = 2πρB~

2āe/me is the mean-
field energy shift, where āe =

∫

d3rAs[k(r)]|Ψe(r)|2
is an average scattering length [26], while E(2) ≈
∫

d3rd3r′|Ψe(r)|2VY (r − r′)|Ψe(r
′)|2/2 involves the

Yukawa potential

VY (r− r′) = −Q̃2 e
−|r−r′|/ξ

|r− r′| , (8)

where its range ξ = 1/
√
16πρBaB equals the BEC heal-

ing length, and Q̃2 ≈ 4π~2ā2eρBmB/m
2
e characterizes its

strength [26]; the “effective charge” Q̃ emphasizes the
analogy with Coulomb interactions. The term E(2) can
be understood as the self-interaction of electrons by a
Yukawa potential induced via phonon exchange at two
different positions. This term is crucial in studies of self-
localization of impurities in a BEC [10–13]. Here, the Ry-
dberg electrons are already localized by strong Coulomb
forces with ion cores. Therefore, the distorted BEC den-
sity, under appropriate conditions, can reflect the oscil-
latory nature of Ψe and “image” the Rydberg electron.
To first order, the perturbed ground state given

by
∣

∣0̃
〉

= |0〉 −
(√

N0/ΩV

)
∑

q 6=0 (uq + vq)Vq/ (~ωq) |q〉
leads to the BEC density distortion δρ (r) ≡ 〈ρ̂ (r)〉 − ρB

δρ(r) = −mBρB
~2π

∫

d3r′VR(r
′)
e−|r−r′|/ξ

|r− r′| . (9)

Eq. (9) shows that δρ(r) is affected by “averaging” VR

within the range ξ. The oscillatory nature of Ψe can
be imaged onto δρ(r) [27]. However, if ξ is larger than
the local wavelength of the Rydberg electron, the averag-
ing will erase this signature. Figure. 2(a) compares the
radial probability density Pe (x) = 4πx2|Ψe (x) |2 with
∆P (r) = 4πr2δρ (r) for a 87Rb(160s) Rydberg atom in
a 87Rb BEC with ρB = 2× 1013 cm−3 for different scat-
tering lengths aB. Larger values of aB produce sharper
oscillations, albeit overall smaller amplitudes. This is
better illustrated by the “normalized” 2D distortion den-
sities ∆P2D/max(∆P2D) in the x-y plane in Fig. 2(b),
where ∆P2D = 2πrδρ. Each quadrant corresponds to a
different value of aB, with portions enlarged in Fig. 2(c):
the oscillations for aB = 20k a.u. (quadrant A) are
sharper than for aB = 5k a.u. (quadrant D), with ampli-
tudes a few percent of the average BEC density. These
show the possibility for in situ imaging of |Ψe|2. We note
that because the electron-Rb interaction is attractive, the
Rydberg atoms will tend to migrate towards the largest
BEC densities (the center of a trapped BEC), as opposed
to the case of superfluid helium droplets, for which Ry-
dberg atoms migrate to the surface due to a repulsive
electron-He interaction. The Rydberg atoms’ finite life-
time imposes additional experimental challenges, how-
ever an upper limit τB = mBξ

2/~ for the BEC response
time [12] (a few microseconds here) is much shorter than
the radiative lifetime of Rydberg atoms [28].
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FIG. 2: (Color online) (a) Comparison of Pe (x) = 4πx2|Ψe (x) |
2 (green filled curve) and ∆P (r) = 4πr2δρ(r) (solid curves)

for a 87Rb BEC at density ρB = 2 × 1013 cm−3 for various scattering lengths aB (in units of k=103 a0). (b) BEC density
distortion ∆P2D/max (∆P2D), where ∆P2D = 2πrδρ, with quadrant A, B, C, and D corresponding to aB = 20k a.u., 10k a.u.,
8k a.u., 5k a.u., respectively. (c) Zooms of the regions outlined in (b).

For large healing lengths ξ, the averaging of VR masks
the electron self-interaction. However, phonon exchange
still mediates non-trivial interactions between Rydberg
atoms. Without a BEC, two Rydberg atoms experience
strong long-range interactions, leading to formation of
macrodimers [29] and the excitation blockade [30–34].
For two ns Rydberg atoms separated by R, it is repulsive
with its leading contribution being the van-der-Waals
(vdW) +C6/R

6 term, where C6 ∝ n11 [35]. Immersed
in a BEC, however, the exchange of phonons between
two Rydberg atoms gives rise to a Yukawa potential. We
derive this potential within the Born-Oppenheimer (BO)
approximation, starting from the interaction of two Ryd-
berg atoms, located atR1 andR2, and BEC atoms (after
applying the Bogoliubov transformation)

HINT ≈ N0

ΩV

(

1V0 +
2V0

)

+
∑

q 6=0

(uq + vq)

×(b†q + b−q)(
1Vqe

iq·R1 + 2Vqe
iq·R2). (10)

Here, iVq ≡
∫

d3rVi(r)e
iq·r, where Vi(r) describes the

interaction of “impurity” i with BEC atoms in coordi-
nate space. Within perturbation theory, the first or-
der correction E(1) gives a mean-field energy shift sim-
ilar to the single Rydberg atom case in the thermo-
dynamic limit. For spherically symmetric interactions
(where iVq = iV−q = iVq is real) and assuming ρB con-
stant, the second order correction is

E(2) = − ρB
(2π)3

∫

d3q
Aq + 2Bqe

iqR cos θq

ǫq + 2uBρB
, (11)

where Aq = (1Vq)
2 + (2Vq)

2, Bq = 1Vq · 2Vq, R =
|R1−R2|, and θq is the angle betweenR and q. The term
containing Aq can be understood as the self-localizing en-
ergy for both Rydberg atoms calculated previously, and
contributes a constant energy shift. Together with the

mean-field energy shift provided by E(1), these contribu-
tions can be omitted in the study of the relative dynamics
of Rydberg atoms: only the term containing Bq gives an
R-dependent energy shift leading to the BO potential

U(R) = − ρB
(2π)3

∫

d3q
2Bqe

iqR cos θq

ǫq + 2uBρB
, (12)

which can be easily generalized to interactions between
any two impurities immersed in a BEC [11]. The
eiqR cos θq term implies that only small q-values con-
tribute for large R, leading to the asymptotic behav-
ior U (R) → −Q̃2e−R/ξ/R, where Q̃2 ≈ ρBmBBq=0/π.
Within the s-wave approximation, the effective charge is
Q̃2 ≈ 4π~2ā2eρBmB/m

2
e as before. Not surprisingly, we

obtain the same Yukawa potential as in Eq. (8), since
phonon-exchange mediates the interaction. Note that
Q̃ is inversely proportional to me for Rydberg atoms,
since the electrons are really the perturbers, as opposed
to more massive neutral impurities of mass mI for which
Q̃ is inversely proportional to mI . Hence, the induced
interaction is much stronger for Rydberg atoms.
The BO approach allows the study of corrections in-

duced by the motion of Rydberg atoms (i.e. “im-
purity” atoms of mass mI). The BO diagonal cor-

rection is ∆E(2) = ~
2〈0̃|

←

∂R
~∂R|0̃〉/mI , where

∣

∣0̃
〉

=

|0〉 − ∑

q 6=0
〈q|HINT|0〉

~ωq
|q〉 is the perturbed ground state.

Therefore, ∆E(2) = ~
2

mI

∑

q 6=0
〈0|∂RHINT|q〉〈q|∂RHINT|0〉

~2ω2
q

, so

that, in the thermodynamic limit and neglecting the con-
stant energy shift terms, the BO diagonal correction to
U (R) is

∆U(R)=− ~
2

2mI

ρB
(2π)3

∫

d3q
Bqq

2 cos2 θqe
iqR cos θq

√

ǫq(ǫq + 2uρB)3
. (13)

As for U(R), only small q-values contribute for large R,
so that ∆U(R) → (mB/mI) (Q̃

2/2ξ)F (R/ξ), with F (x)
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FIG. 3: (Color online) (a) Potential between 87Rb atoms in
ground and 50s states. (b) Bq as a function of q. (c) Interac-
tion between two Rydberg 87Rb(50s) atoms in a BEC (solid
black curve) and in vacuum (solid red curve). The Yukawa po-
tential dominates the tail (dash-dotted curve) while the blue
filled curve represents the lowest bound state.

defined as F (x) = 2
π − 4

πx2 − 2f(−1,x)
x2 + f(0,x)

x − f(1, x),
where f(n, x) = In(x) − Ln(x) is given in terms of the
modified Bessel function of the first kind In(x) and the
modified Struve function Ln(x). The asymptotic behav-
iors are F (R/ξ) → 4/(3π) for R ≪ ξ, and F (R/ξ) →
12ξ4/(πR4) for R ≫ ξ. We note that for R ≫ ξ, these
imply a vanishing adiabatic potential U (R) and a BO
diagonal correction dominated by a repulsive 1/R4 term.
As expected, ∆U can be neglected if mB ≪ mI . An-
other limit is reached for a very large ξ, achievable using
a Feshbach resonance to tune aB → 0. Then, the BO
diagonal correction also vanishes: limξ→∞ ∆U (R) = 0,
even when mB is larger than mI . In this limit, U (R)
does not vanish but reduces to the Coulomb potential
−Q̃2/R.

We illustrate these predictions with two 87Rb(50s) Ry-
dberg atoms immersed in a 87Rb BEC with ρB = 1013

cm−3. To ensure a healing length ξ much larger than
the Rydberg atoms, aB is tuned to 10 a.u. (e.g., via a
Feshbach resonance), so that ξ = 3.66 × 104 a.u. The
numerical “trilobite-like” interaction shown in Fig. 3(a)
is constructed using the first-order perturbative model
[16, 36] including s- and p- contributions [17], with zero-
energy scattering lengths As(0) = −16.05 a0 [37]. The
states in the range n = 21− 72 were included and the re-
sulting Hamiltonian diagonalized to obtain the 50s eigen-
state [38]. Fig. 3(b) shows that Bq converges to a con-
stant Bq=0 ≈ 2 × 104 a.u. for a small q, yielding an

effective charge Q̃2 ≈ 1.54 × 10−3 a.u. Fig. 3(c) depicts
the effect of immersing Rydberg atoms in a BEC: with-
out the BEC, two Rydberg atoms interact via the vdW
potential C6/R

6 +C8/R
8 +C10/R

10 (repulsive solid-red
curve with C6 = 1.074× 1020, C8 = −7.189× 1026, and
C10 = 7.162 × 1033, in a.u. for 87Rb(50s) [39].) In
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sities ρB and fixed aB = 10 a.u., and for (b) different scatter-
ing lengths aB and fixed ρB = 1013 cm−3.

a BEC, the BO potential (solid black curve) is attrac-
tive at large separations, following the Yukawa potential
−Q̃2e−R/ξ/R (dash-dotted curve), before becoming re-
pulsive at shorter range where the “bare” repulsive vdW
interaction dominates the phonon-exchange contribution.
The resulting well can support bound levels; here, its
depth is about -17.77 MHz and its equilibrium separation
about 60k a.u. (much larger than the 5k a.u. extension
of the “trilobite-like” potentials). The large mass of Rb
leads to many bound levels; the three lowest are at about
-17.64 MHz, -17.56 MHz and -17.47 MHz. The ground
state wave function with a spatial width about 2k a.u. is
also shown in Fig. 3(c). The BO diagonal correction ∆U
is less than 5% (+0.85 MHz near the well minimum) and
decreases at larger R.

These results show how phonon-exchange modifies an
otherwise repulsive interaction into a potential well ca-
pable of binding two Rydberg atoms. Fig. 4 explores
its sensitivity to variations in ρB and aB, and compares
them to the “bare” case (without BEC). The behavior of
the BO curves can be understood qualitatively from the
s-wave approximation. For a fixed aB, the competition

of Q̃2 ∝ ρB and ξ ∝ ρ
−1/2
B leads to a deeper BO curve

for a moderate density (see Fig. 4(a)). However, Q̃2 is

independent of aB while ξ is proportional to a
−1/2
B , giv-

ing deeper BO curves as aB gets smaller (see Fig. 4(a)).
Hence, the BEC-induced interaction can be conveniently
controlled by tuning aB via a Feshbach resonance; in the
limit aB → 0, the long-range Yukawa potential becomes
an attractive Coulomb potential.

In summary, we studied the interaction between Ryd-
berg atoms mediated by phonon exchange in an atomic
BEC, and found two limiting cases with respect to the
BEC healing length ξ. For a small ξ, the BEC den-
sity modulation can “image” the wave function of the
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Rydberg electron, while large ξ leads to attractive wells
strong enough to bind Rydberg atoms. These wells are
easily controlled by tuning aB, e.g., to generate “syn-
thetic” Coulomb potentials as aB → 0. Studies of Ryd-
berg atoms immersed in BECs open promising avenues
of research, such as bi- and multi-polaron physics [13]
or “co-self-localization” [12], possible Rydberg crystal-
lization [40], or phase diagram of Yukawa bosons [41].
Finally, they offer the opportunity to investigate systems
where electron-phonon coupling plays a crucial role under
conditions different from the standard BCS physics.
This work was partially supported by the U.S. Depart-

ment of Energy, Office of Basic Energy Sciences (J.W.),
the Army Research Office Grant No. W911NF-13-1-0213
(M.G.), and the National Science Foundation Grant No.
PHY 1101254 (R.C.)
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