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QCD perturbation theory ignores the compact nature of SU(3) gauge group that gives rise to
the periodic θ-vacuum of the theory. We propose to modify the gluon propagator to reconcile
perturbation theory with the anomalous Ward identities for the topological current in the θ-vacuum.
As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between
different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a
“glost”. We evaluate the glost propagator and find that it has the form G(p) = (p2 + χtop/p

2)−1

where χtop is the Yang-Mills topological susceptibility related to the η′ mass by Witten-Veneziano

relation; this propagator describes confinement of gluons at distances ∼ χ
−1/4
top ' 1 fm. The same

functional form of the propagator was originally proposed by Gribov as a solution to the gauge
copies problem that plagues perturbation theory. The resulting running coupling coincides with the
perturbative one at p2 � √χtop, but in the infrared region either freezes (in pure Yang-Mills theory)
or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario
makes explicit the connection between confinement and topology of the QCD vacuum; we discuss
the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

PACS numbers: 25.75.Bh, 13.87.Fh, 12.38.Mh

QCD possesses a compact gauge group that allows for topologically non-trivial gauge field configurations. These
configurations realize homotopy maps from the gauge group to the space-time manifold. For example, the homotopy
map from the SU(2) subgroup of the gauge group to the Euclidean space-time sphere S3 describes the instanton
solution [1]. However the compactness of the gauge group is ignored in perturbation theory, and this may be at the
origin of problems marring the perturbative approach.

In QCD, one of these problems is the existence of Gribov copies [2] – multiple solutions of the gauge-fixing condition
that make the perturbative approach ambiguous. In Coulomb gauge, the emergence of Gribov copies can be traced
back to the existence of energy-degenerate vacua with different Chern-Simons numbers [3]. A natural question arises
– is it possible to formulate QCD perturbation theory in a way that is consistent with the topological structure of
the theory? In this Letter we argue that the answer to this question is positive. We find that the resulting gluon
propagator naturally describes confinement, i.e. non-propagation of color degrees of freedom, and the running coupling
displays the screening of color charge at large distances.

In Minkowski space-time, instanton solutions represent the tunneling events connecting the degenerate vacuum
states with different Chern-Simons numbers

X(t) =

∫
d3x K0(x, t), (1)

where K0 is the temporal component of topological current

Kµ =
g2

16π2
εµνρσA

ν,a

(
∂ρAσ,a +

1

3
gCabcAρbA

σ
c

)
; (2)

the first term in K0 is the density of Abelian “magnetic helicity” while the second term is its non-Abelian generaliza-
tion.

The chiral anomaly in QCD leads to non-conservation of the axial current

∂µJ
µ
A = 2NfQ(x) +

∑
f

(2imf )q̄fγ5qf , (3)
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where mf are the masses of quarks, Nf is the number of flavors, and

Q(x) =
g2

32π2
Fµν(x)F̃µν(x) (4)

is the density of topological charge normalized by
∫
d4x Q(x) = ν; for finite action field configurations ν is an integer.

The density of topological charge can be represented as a divergence Q(x) = ∂µKµ of the gauge-dependent current
(2).

Veneziano [4] has demonstrated that the periodic θ-vacuum stucture in QCD can be captured by introducing a
massless “ghost” in the correlation function of the gauge-dependent topological current (2):

Kµν (q) ≡ i

∫
d4x eiqx 〈Kµ (x)Kν (0)〉 q2�µ2

−−−−−→ −µ
4

q2
gµν , (5)

where µ4 ≡ χtop is the topological susceptibility of pure Yang-Mills theory. Note that the r.h.s. of Eq. (5) has the
“wrong” sign, i.e. the ghost does not describe a propagating degree of freedom. This means that the ghost cannot be
produced in a physical process; however the couplings of the ghost (that describe the effect of topological fluctuations)
certainly can affect physical amplitudes. A similar “dipole” ghost had been earlier introduced by Kogut and Susskind
[5] in the analysis of axial anomaly in the Schwinger model. This procedure has been demonstrated to solve the UA(1)
problem in QCD [6, 7].

The physical meaning of Eq. (5) becomes apparent if one compares it to the correlation function of the electron’s
coordinate x(t) in a crystal [8]:

i

∫
dt eiωt 〈T{x(t)x(0)}〉 ω→0−−−→ − 1

ω2 m∗
= − 1

ω2

∂2E(k)

∂k2

∣∣∣∣
k=0

, (6)

where E = k2/2m∗ is the energy of an electron with an effective mass m∗ and quasi-momentum k in a crystal. The
emergence of the pole in Eq. (6) signals the possibility of electron’s propagation in the periodic potential of the crystal
due to tunneling. Note that the pole emerges not just from a single tunneling event (corresponding to the instanton
in QCD), but sums up the effect of many tunnelings throughout the crystalline lattice.

The analogy between Eq. (5) and Eq. (6) can be made even more apparent if we choose the frame with qµ = (ω, 0)
and use the analog of coordinate given by Eq. (1) that is invariant w.r.t. “small” gauge transformations but changes
by an integer under “large” gauge transformations (i.e. the transformations that cannot be smoothly deformed to
identity). The expression Eq. (5) then takes the form completely analogous to Eq. (6):

i

∫
dt eiωt 〈T{X(t)X(0)}〉 ω→0−−−→ −µ

4

ω2
V = − 1

ω2

∂2E(θ)

∂θ2

∣∣∣∣
θ=0

, (7)

where V is the volume of the system, and E(θ) = ε(θ)V is the energy of the Yang-Mills vacuum. The energy density
of the vacuum ε(θ) is a periodic function of the θ angle that is analogous to the quasi-momentum k in Eq. (6). At
small θ, we can expand ε(θ) and write

ε(θ) = µ4 θ2

2
, (8)

which exhibits the physical meaning of µ4 as of the topological susceptibility χtop = µ4 of the Yang-Mills theory; note
that a term linear in θ is forbidden by P and CP invariances of QCD.

It is well known that topological susceptibility vanishes, order by order, in perturbation theory. Perturbative
description thus corresponds to µ→ 0 in Eq. (5), or to the limit of the infinitely heavy electron, m∗ →∞ in Eq. (6).
Infinitely heavy electrons do not respond to electromagnetic fields, as the corresponding coupling of electromagnetic
current j = e q/m∗ to the gauge field jA ∼ 1/m∗ vanishes in the limit m∗ →∞. In this case the dynamics of photons
is not sensitive to the periodic structure of the crystal, and one can build the usual perturbation theory of photons.
However when m∗ is finite, and is of the order of the frequency of the external gauge field, photons can be absorbed
and re-emitted by the electrons, and these processes severely affect the photon propagator. Also, at finite m∗, the
static Coulomb field can be screened by the electrons at large distances.
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FIG. 1: Fig. 1-a : Eq. (5) in momentum representation; helix lines represent gluons and the dashed line depicts the ghost.
Fig. 1-b : the gluon dressed by the interactions with the ghost: a “glost”, see Eq. (11) for the corresponding self-energy
expression.

As we will discuss below, the situation in QCD is very similar – as µ→ 0, the periodic structure of the θ vacuum
becomes irrelevant. However, in the physical world µ ∼ ΛQCD ∼ 200 MeV, so the ghost (describing the tunneling
in the periodic θ-vacuum) strongly affects propagation of gluons with frequencies ω ∼ µ. At large distances, the
ghost also gives rise to the screening of color charge, leading to the freezing of the effective coupling in the infrared
IR limit for pure gauge theory, or to the vanishing of the coupling in the IR in QCD with light quarks. Because
µ ∼ ΛQCD ∼ 1/Rconf is on the order of inverse confinement radius Rconf , these phenomena describe confinement of
gluons at distances Rconf ' 1 fm.

The key observation of our paper is that Eq. (5) and Eq. (2) define an effective ghost-gluon-gluon vertex Γµ (q, p).
Using this vertex, we can re-write the correlator Eq. (5) at small q2 as follows (see Fig. 1-a):

Kµν (q) =
1

(2π)4i

∫
d4p Γµ (q, p)

1

p2(q − p)2
Γν (q, p) = −µ

4

q2
gµν (9)

From Eq. (9) we find that

Γµ (q, p) Γν (q, p) ∝ −µ
4

p2
gµν , for q ≤ p. (10)

The vertices Γµ (q, p) describe the excitation of the ghost by gluons, and affect the gluon propagation at small
virtualities.

Indeed, the gluon propagator is now the solution of the equation shown in Fig. 2 with Σ (p) given by

Σµν (p) =
1

(2π)4i

∫
d4q Γµ (q, p)

1

q2(q − p)2
Γν (q, p) (11)

where 1/q2 is the propagator of the ghost. In evaluating the integral of Eq. (11) we assume that q � p since Γµ’s
describe the non-perturbative effects concentrated at small momenta (long distances). Therefore,

Σµν (p) ' 4π

(2π)4

∫ p

0

dq2q2 Γµ (q, p)
1

q2p2
Γν (q, p) = − gµν

µ4

p4

∫ p2

dq2 = −gµν
µ4

p2
, (12)

where we used Eq. (10); note that in Eq. (12) we made rotation to the pseudo-Euclidean space. We can now write down
the Schwinger-Dyson equation for the gluon propagator [25] Gµν (p) = gµν G (p) in terms of Σµν (p) = gµν Σ (p), see
Fig. 2 :

G (p) =
1

p2
+

1

p2
Σ (p) G (p) (13)
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FIG. 2: The graphic form of the equation for the gluon propagator, Eq. (13). The full propagator is denoted by the bold helix
line; thin helix stands for the perturbative gluon propagator G0(p), and the blob for self-energy Σ(p) given by Eq. (11) and
Eq. (12).

with the solution

G (p) =
1

p2 − Σ (p)
=

1

p2 + µ4

p2

(14)

The propagator (14) has remarkable properties. First, G (p) has no infrared singularities and no gluon pole in
the physical region. Indeed, this propagator has only complex poles at p2 = ±iµ2. As a result, gluons cannot be
observed as particles in detectors – in other words, they are confined. Second, the propagator of the type of Eq. (14)
was proposed by Gribov [2] as a solution to the problem of gauge copies – multiple solutions to the gauge fixing
condition, see [9, 10] for reviews. Hence we can state that introducing the coupling to the ghost (and thus taking
account of the periodicity of the θ-vacuum) solves the problem of Gribov copies and leads to the confinement of gluons.
The dimensionful Gribov parameter acquires a well-defined meaning of topological susceptibility χtop = µ4 related to
the η′ mass by the Witten-Veneziano relation [4, 7]; since µ ' ΛQCD, confinement emerges at distances of about 1
fm. Note that close to the deconfinement transition, the topological susceptibility vanishes reflecting the restoration
of UA(1) symmetry [11, 12], see [13] for a review. Since at µ → 0 the gluon propagator becomes perturbative, the
restoration of UA(1) symmetry and deconfinement should occur at the same temperature as suggested by the lattice
data [11]; however close to Tc the non-perturbative interactions induced by µ 6= 0 are important.

In our approach, the propagator Eq. (14) results from the admixture of the ghost to the perturbative gluon (see
Fig. 1-b), with an amplitude defined by the topological susceptibility µ4. We thus propose the following name for the
particle with propagator given by Eq. (14) that represents a coherent mixture of a gluon and a ghost – a “glost”.
Unlike the ghost, the “glost” can be produced in a physical process, but unlike the perturbative gluon, it is confined
and can propagate only at short distances ∼ µ−1 ∼ 1 fm.

Let us now re-consider the asymptotic freedom of QCD [14, 15] using the “glost” propagator Eq. (14). The gluon
propagator Gµν (p) = gµν G (p) was introduced above in Feynman gauge, in accord with the prescription (9) for
the correlation function of topological current. However since the Lorentz structure of the “glost” propagator is
identical to that of the perturbative gluon, we can use any gauge that is convenient for a specific computation
replacing G0(p) = 1/p2 by (14). In our derivation we will compute the interaction energy of two heavy quarks in the
Coulomb gauge [16, 17] that is free from the Faddeev-Popov ghosts, so we can avoid dealing with two different types
of ghosts. The dominant contribution responsible for the asymptotic freedom stems from the diagram of Fig. 3-a.
The contribution of this digram in perturbative QCD takes the form

Π(a) = 3g2C2
2

∫
d4k′

(2π)4i

1

(k − k′)2 (k′20 − k′2)

(
1−

(
k · k′

)2
k2 k′2

)
; (15)

Π is related to Σ by Σ = k2Π.
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FIG. 3: The first order corrections to the Coulomb energy. Helix lines denote the transversely polarized gluon, the double helix
lines show the longitudinally polarized gluon, and the solid arrow lines depict the quarks.

For the “glost” propagator (14), Eq. (15) changes and takes a different form:

Π(a) = 3g2C2
2

∫
d4k′

(2π)4i

(k − k′)2(
(k − k′)2

)2
+ µ4

(k′20 − k′2)(
(k′20 − k′2)

)2
+ µ4

(
1−

(
k · k′

)2
k2 k′2

)
= 3g2C2

2

∫
d4k′

(2π)4i
Re

{
1

(k − k′)2 + iµ2

}
Re

{
1

k′20 − k′2 + iµ2

}
1

k2k′2

(
k2k′2 −

(
k · k′

)2)
(16)
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In Eq. (16) we have four terms obtained by choosing different signs of iµ2. To illustrate the procedure of calculation,
let us evaluate one of them:

Π
(a)
1 = 3g2C2

2

∫
d4k′

(2π)4i

k2k′2 −
(
k · k′

)2(
(k − k′)2 + iµ2

) (
k′20 − k′2 + iµ2

)
k2k′2

. (17)

Introducing Feynman parameters α1 + α2 + α3 = 1 we obtain (P = k′ − α1k and αS = g2/4π):

Σ
(a)
1 = 3 g2C2

2

1

k2

∫ 1

0

dα1

∫ 1−α1

0

dα2

∫
d4k′

(2π)4i

k2P 2 − (k · P )
2(

α2k20 − P 2 − k2α1(1− α1) + iµ2(α1 + α2)
)3

integrating over k′0−−−−−−−−−−−−−−−→ g2C2
2

∫ 1

0

dα2√
α2

∫ 1−α2

0

dα1

∫
d3P

(2π)3
3

16

P 2(
P 2 + k2 ∗ α1(1− α1) + iµ2(α1 + α2)

)5/2
integrating over P−−−−−−−−−−−−−−→ 3αS

8π
C2

2

∫ 1

0

dα2√
α2

∫ 1−α2

0

dα1

{
− 4

3
+ ln

(
2L√

k2α1(1− α1) + iµ2 (α1 + α2)

)}
, (18)

where L is an ultraviolet cutoff in the integration over momentum. The integrals over α1 and α2 can be taken
analytically. The main features of Eq. (18) are the following: it has a logarithmic divergence at large k and is finite
at k = 0.

Summing all terms we find that we need to replace ln
(
L2/k2

)
of perturbative QCD in the diagram of Fig. 3-a by

the following function:

ln
(
L2/k2

)
−→ ln (L, k, µ) ≡ 3

8

∫ 1

0

dα1√
α1

∫ 1−α1

0

dα2{
− 16

3
+ ln

 4L2√
k4α2

2(1− α2)2 + µ4 (α1 + α2)
2

 + ln

 4L2√
k4α2

2(1− α2)2 + µ4 (α1 − α2)
2

} (19)

It turns out that the same substitution has to be done in the expression for Fig. 3-b that in perturbative approach
gives a positive contribution to the β-function. However the contribution of the quark loop (Fig. 3-c) remains the
same as in perturbative QCD. The sign of this contribution to the β-function is also positive, and it leads to Landau
pole and a “Moscow zero” [18] . As a result the QCD coupling in our approach tends to zero in the infrared region
of k → 0.

If we choose the renormalization point k = µ, the running coupling takes the form

αS(k2) =
αS (µ)

1 + αS (µ)
[
11Nc

12π (ln (L, k, µ)− ln (L, µ, µ)) − 2Nf

12π ln (k2/µ2)
] (20)

In Fig. 4 we plot the coupling αS as a function of k for two cases: our model for QCD and pure gluodynamics (Fig. 4-
a), and the comparison of αS in gluodynamics with perturbative QCD calculations in the leading order (Fig. 4-b). In
both cases we choose the renormalization mass to be equal to the mass of the Z-boson; we use the value of µ = 0.18
GeV from the original paper [4] where it has been determined from the mass of η′-meson, and Nc = Nf = 3.

One can see that replacing the gluon propagator by the propagator of the glost in gluodynamics removes the Landau
pole and leads to the finite value of αS at k = 0. On the other hand, with the inclusion of quarks, the strong coupling
vanishes at k = 0. At short distances, the running coupling is dominated by the perturbative contribution and so
is not modified. The ghost affects the running coupling in a way that is quite different from the effect of a single
instanton, which has been shown to increase the effective coupling at distances on the order of the instanton size
[19, 20]. This may not be surprising as the ghost describes the effect of many instanton transitions throughout the
θ-vacuum. The screening effect of the ghost admixture is clearly a consequence of the fact that it is a spin-zero
pseudoscalar “particle”.

It has been argued by Dokshitzer [21] that the experimental data indicate that in the IR region the QCD coupling
remains effectively small:

α0 =
1

µI

∫ µI

dk αS (k) ≈ 0.5 for µI = 2 GeV. (21)
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Fig. 4-a Fig. 4-b

FIG. 4: The running constant αS as a function of momentum k. Fig. 4-a shows the result for αS in our model for QCD with
light quarks (blue line that goes to zero at k → 0) and gluodynamics (red line). Fig. 4-b shows the comparison of momentum
dependence of αS in in our model for gluodynamics (blue line) and perturbative QCD (red line that is above the blue one at
small k). The renormalization point is chosen at the mass of Z-boson, k = MZ .

In our approach we get α0 = 0.59 for renormalization point k = MZ , in reasonable agreement with Eq. (21).
It is of fundamental interest to establish the microscopic dynamics responsible for the long-range correlations of

topological current captured by the ghost. A recent study within the “deformed QCD” attributes these correlations
to the topological order in the vacuum [22]. Our result suggests a link between the confinement and the long-range
topological correlations in the QCD vacuum, and provides a practical way of computing power-suppressed corrections
to QCD amplitudes, in particular the ones that are forbidden in the perturbative approach.

To summarize, we propose to modify the gluon propagator in perturbative QCD by taking account of the periodic
structure of the QCD θ-vacuum. Our prescription for the gluon propagator leads to the coupling of the gluons to the
ghost saturating the anomalous Ward identity for topological current. The resulting “glost” propagator appears to
have the functional form originally proposed by Gribov, in which the role of dimensionful parameter is played by the
topological susceptibility χtop ≡ µ4. Our approach thus removes the Gribov copies that usually plague perturbation
theory, and describes confinement of gluons at distances ∼ µ−1 ' 1 fm. We also find that the running coupling in
the IR freezes in pure gauge theory, or tends to zero in QCD with light quarks. Because the topological susceptibility
vanishes above the deconfinement transition, the “glosts” become usual perturbative gluons in the deconfined phase
at high temperatures. The glost propagator leads to the exponential fall-off of the high-energy hadron scattering
amplitude at large impact parameters needed to satisfy the Froissart bound; this can solve the long-standing problem
of the perturbative approach in describing high energy scattering [23]. In QCD amplitudes the coupling to the ghost
can give rise to spin asymmetries [24] that are different from the usual perturbative approach – it will be interesting
to study the resulting implications for spin physics at colliders.
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