
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Position-Momentum Duality and Fractional Quantum Hall
Effect in Chern Insulators

Martin Claassen, Ching Hua Lee, Ronny Thomale, Xiao-Liang Qi, and Thomas P.
Devereaux

Phys. Rev. Lett. 114, 236802 — Published 11 June 2015
DOI: 10.1103/PhysRevLett.114.236802

http://dx.doi.org/10.1103/PhysRevLett.114.236802


Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators

Martin Claassen,1, 2 Ching Hua Lee,3 Ronny Thomale,4 Xiao-Liang Qi,3 and Thomas P. Devereaux2, ∗

1Department of Applied Physics, Stanford University, CA 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC & Stanford University, CA 94025, USA

3Department of Physics, Stanford University, CA 94305, USA
4Institute for Theoretical Physics and Astrophysics, University of Würzburg, D 97074 Würzburg

We develop a first quantization description of fractional Chern insulators that is the dual of the
conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum
interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in
momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry
of the problem emerges from the interplay of single-body and interaction metrics, both of which act
as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present
a novel broad class of ideal Chern insulator lattice models that act as duals of the isotropic FQH
effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed
microscopic understanding of the interplay of interactions and non-trivial quantum geometry.
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The effects of topology and quantum geometry in con-
densed matter physics have recently garnered immense
attention. With topological insulators and the quantum
anomalous Hall effect constituting the well-understood
case of non-interacting or weakly-correlated electron sys-
tems [1–3], the recent theoretical discovery of the frac-
tional quantum Hall (FQH) effect in nearly-flat bands
with non-trivial topology [4–8] poses deep questions re-
garding the confluence of strong interactions and non-
trivial quantum geometry. On one hand, an experimen-
tal realization of such a fractional Chern insulator (FCI)
could conceivably push relevant energy scales by an order
of magnitude, paving the way to robust FQH signatures
[9–14]. On the other hand, the disparity of conventional
Landau levels and flat bands with non-zero Chern num-
ber C suggests a rich playground to realize novel states
with topological order that cannot be attained in a con-
ventional electron gas in a magnetic field [15, 16], while
simultaneously presenting a profound challenge to under-
stand the underlying microscopics of strong interactions.

Most of our current understanding regarding FCIs
stems from exact diagonalization (ED) of small clusters
for C = 1 [17–30] and C > 1 [31–35], mutatis-mutandis
mappings of the Hilbert space of flat Chern bands to the
lowest Landau level (LLL) [15, 36–40] or vice versa [16],
and approximate long-wavelength projected density alge-
bra [41–48]. The latter approaches however treat exclu-
sively the universal long-wavelength continuum limit of
the FQH problem, whereas the presence and relevance
of the lattice manifests itself in the short-wavelength
physics. This conundrum is highlighted by the zoo of FCI
lattice models established so far, which display strongly
varying proclivities to host stable FQH phases that do not
correlate well with simple measures such as “flatness” of
band dispersion and Berry curvature.

At its heart, the theoretical challenge stems from the
fact that the immense success in describing the micro-
scopics of the conventional FQH effect resists a simple
description in second quantization [49] that is essential

to describe interacting electrons on the lattice [50–55]. A
resolution is crucial to provide a foundation for studies
of non-Abelian phases [56–58] and to provide microscopic
insight that can ultimately drive experimental discovery.

In this work, we develop a first quantization description
of FQH states in FCIs that leads to an effective Hamil-
tonian that is the dual of the usual FQH problem, with
the roles of position and momentum interchanged. In
this picture, FCI analogues of FQH states are described
by anisotropic FQH liquids forming in momentum-space
Landau levels in a fluctuating magnetic field. The chal-
lenge of understanding FQH states in FCIs reduces to
a variational problem of determining the deformation of
the guiding-center orbitals due to the presence of the lat-
tice, in analogy to Haldane’s geometrical picture of the
anisotropic FQHE [59–61]. Guided by these insights, we
then present and provide examples of a broad class of
ideal FCI host lattice models that constitute FCI analogs
of the isotropic FQHE. These models afford a particu-
larly simple description of the interacting low-energy dy-
namics, acting as FQH parent Hamiltonians with emer-
gent guiding center and SU(C) symmetry. The effects of
quantum geometry and Berry curvature fluctuations are
analyzed in terms of Haldane pseudopotentials.

Consider a 2D band insulator hosting an isolated
fractionally-filled flat band with non-zero C, generically
described by an N -orbital Bloch Hamiltonian ĥk. In
band basis, the flat band of interest is spanned by Bloch
states |uk〉 with dispersion ĥk |uk〉 = ε |uk〉. If the band
gap is larger than intra-band interactions, then the ki-
netic energy is effectively quenched while momentum-
dependent orbital mixing for |uk〉 gives rise to a non-
trivial quantum geometry, expressed by a gauge field and
a Riemann metric on CPN−1 for the Bloch band, the
Berry curvature Ω(k) and Fubini-Study metric gµν(k):

Ω(k) = εµν∂kµAν(k) Aν(k) = −i 〈uk|∂kνuk〉 (1)

gµν(k) = 1
2

〈
∂kµuk

∣∣[1− |uk〉〈uk|]∣∣∂kνuk〉+ (µ↔ ν) (2)
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Here, Aν(k) is the Berry connection, and C =
1

2π

∫
BZ
d2k Ω(k). We use lattice constants a0 = ~ = 1.

The first task at hand is to describe the guiding-
center basis. In the case of an isotropic free elec-
tron gas in a magnetic field, Laughlin constructed a se-
ries of incompressible FQH trial wave functions [62] for
odd-fraction filling factors, from a single-body basis of
radially-localized symmetric-gauge LLL wave functions
〈r|m〉 ∼ zme−|r|

2/4, which are uniquely determined by
demanding that they are eigenstates of the angular mo-
mentum operator. While angular momentum does not
readily translate to the lattice, a key observation is that
such states are simultaneous eigenstates of a parabolic
confinement potential V̂ (r) = λ

2 r2 projected to the LLL:

[
∑
m′ |m′〉〈m′|] V̂ (r) |m〉 = λ (m+ 1) |m〉.

A natural way to adapt this construction to an FCI is
to consider anisotropic confinement on a lattice, as a tool
to determine the guiding-center basis:

V̂ (r) = 1
2λ xµη

µνxν (3)

Here, ηµν is a unimodular Galilean metric which a pri-
ori serves as a variational degree of freedom, constrained
to retain the discrete rotational symmetries of the host
lattice, and r = m1a1 +m2a2,m1,2 ∈ Z indexes the unit

cell with lattice vectors a1,2. Placing V̂ on a L × L lat-
tice via appropriate long-distance regularization [63], the
low-energy dynamics follow from projection onto the flat
band with projector P̂ =

∑
k |k〉〈uk|, and taking L→∞:

V = P̂ V̂ (r)P̂> =
λ

2
Π̂µη

µνΠ̂ν +
λ

2
ηµνgνµ k ∈ BZ (4)

where Π̂µ are momentum-space analogues to the usual
canonical momentum operators, with µ = x, y:

Π̂µ = −i∂kµ +Aµ(k) [Π̂µ, Π̂ν ] = −iεµν Ω(k) (5)

Isotropic case: Physical insight may be gleaned by
identifying (4) with an electron in a magnetic field but in
momentum-space; ηµν = δµν is particularly instructive:

V =
λ

2
[−i∇k + A(k)]

2
+
λ

2
tr g(k) k ∈ BZ (6)

Here, Ω(k) identifies with the magnetic field, and
electrons scattering at small momenta pick up Berry
phase factors in analogy to the Aharonov-Bohm effect.
For benign ’magnetic field’ fluctuations over the BZ∫
d2k[k2

BΩ(k) − 1]2/ABZ < 1 with inverse magnetic
length k2

B = ABZ
2πC , the guiding-center basis is there-

fore described by the well-known Landau levels on the
torus penetrated by flux C, but in momentum-space.
These momentum-space Landau levels (MLLs) are in-
dexed by two quantum numbers m,n with eigenspectrum
εmn = λC√

ABZ
(m + 1), where m is the MLL index and n

indexes a C-fold degeneracy per MLL [65]. Identification
of the usual guiding center coordinates is thus reversed:
the MLL index m plays the role of the FCI guiding center

index and can be identified with discrete CN rotational
symmetry if present, whereas n = 0, ..., C − 1 acts as a
component index for C > 1 [66]. In real space, MLL
wave functions are radially-localized (Fig. 1(a-f)). Im-
portantly, (4) does not enter as physical confinement in
the infinite system, thus λ→ 0 can be taken in the ther-
modynamic limit. However, λ 6= 0 enters as a proper
energy scale when considering finite-size droplets [67].

Anisotropic case: Generically, the confinement metric
ηµν can be expressed in terms of a complex vector ω that
obeys ηµν = ω̄µων + ω̄νωµ. The isotropic limit becomes
ω̄ = [ 1√

2
, i√

2
]>. Corresponding guiding center operators

π̂ = Π̂µ ω
µ , π̂† = ω̄µ Π̂µ (7)

obey commutation relations [π̂ , π̂†] = Ω when ∂kµω
µ = 0,

which fixes a phase freedom ω → ωeiϕ. Substituting
(7) in (4) yields the confinement Hamiltonian in guiding-
center language that determines the single-body basis:

V = λ π̂π̂† + 1
2λ (ηµνgµν − Ω) (8)

Comparison with Haldane’s construction [59] reveals that
ηµν is precisely the FCI momentum-dual of the guiding-
center metric of the anisotropic FQHE. The root cause
for this duality can be inferred by noting that the con-
ventional FQHE can in fact be formulated both in po-
sition and momentum representation, with single-body
dynamics and LLL wave functions form-invariant un-
der interchange of complex coordinates x + iy and mo-
menta kx + iky. This situation is drastically different in
FCIs, where the discreteness of the lattice necessitates
switching to momentum space in order to retain a first-
quantized description in terms of continuous coordinates.

Conceptually, the challenge of devising a microscopic
description of FQH states in FCIs reduces to a variational
problem of determining the deformation of the guiding-
center orbitals upon placing a FQH liquid on the lattice.
Given an appropriate choice of ηµν(k), any FCI can in
principle be captured by many-body trial ground states,
constructed from the single-body eigenstates of (8): for
instance, given the lowest MLL wave function Ψ0(k)
and ladder operators â† that generate higher MLLs, the

Laughlin state at ν reads Ψν ∼
∏
i<j(â

†
i − â

†
j)

1/νΨ0(k).

A preferred guiding-center metric can be readily iden-
tified by demanding suppression of a residual dispersive
term ηµνgµν − Ω in (8) that delocalizes the MLL basis:

η(k) =
√

det g(k) g−1(k) (9)

The dispersion vanishes exactly if and only if

2
√

det g(k) = |Ω(k)| (10)

This is the condition for an ideal FCI droplet, and is sat-
isfied by every two-band model [63] while placing con-
straints on models with three or more bands.
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Interactions: Insight into stabilization of trial states
necessitates recasting the many-body problem into first
quantization. Analogous to the FQHE, density interac-
tions may be generalized via an interaction metric η̃µν :

ĤI =
∑
q

Vq ρ̂qρ̂−q, ρ̂q =
∑
αk

ĉ†kαT̂q[η̃µν ] ĉkα (11)

where T̂q[η̃µν ] = eqµη̃
µν∂kν enters as a metric-dependent

momentum-space translation operator. In contrast to
the FQHE on the plane, translation symmetry and pe-
riodicity in q constrain η̃µν to SL(2,Z). Importantly,
the guiding center metric is still a variational degree
of freedom if the deviation of (9) and η̃µν is signifi-
cant. To proceed, note that if the ideal droplet con-
dition (10) is satisfied, then an exact operator identity
[1− |uk〉〈uk|] ω̄µ∂kµ |uk〉〈uk| = 0 [43] entails that any op-

erator of the form Ô = Λ̂−(−i∂µωµ)Λ̂+(−iω̄µ∂µ) with
analytic functions Λ± can be projected to the flat band
as P̂ ÔP̂> = Λ̂−(π̂)Λ̂+(π̂†). Consider thus a decompo-
sition of η̃µν = χ̄µων + χµω̄ν with complex vector χ: if
χ is momentum-independent, then the translation opera-
tor is precisely of this form: T̂q = eq+ω

µ∂kµ eq−ω̄
µ∂kµ with

q± = qµχ̄
µ, qµχ

µ — this case is considered in detail be-
low [68]. Note that in the isotropic limit η̃µν , ηµν = δµν ,
T̂q reduces to the conventional translation operator T̂q =
eiq·(−i∇k) with q± = qx ± iqy, while HI is just the usual
density interaction. While emphasis has thus far been
placed on narrowing down to a suitable class of interac-
tions, substantial progress has been made: projected to
the flat band, the joint dynamics of (3), (11) can now be
succinctly expressed in guiding-center language:

Ĥ = λ
∑
i

π̂iπ̂
†
i +

∑
i<jq

Vqe
iq+(π̂i−π̂j)eiq−(π̂†i−π̂

†
j ) (12)

This Hamiltonian is the central result of this paper -
it provides a first-quantized description of the low-energy
dynamics of an ideal FCI in terms of the quantum ge-
ometry ηµν , η̃µν of the lattice. Its interaction describes
two-body momentum-space magnetic translations, and
acts solely on the relative guiding center indices. A key
consequence is the approximate conservation of center-of-
mass guiding center, quantified by Berry curvature fluc-
tuations averaged over the BZ with ABZ

2 ‖[π̂rel, π̂
†
cm]‖2 =∫

BZ
d2k [Ω(k) − 2πC

ABZ
]2, where π̂cm/rel = (π̂1 ± π̂2)/

√
2

span the two-body problem in the Chern band [69]. Fur-
thermore (12) does not act on the intra-MLL index n,
stipulating an emergent SU(C) symmetry for C > 1 [70].

The physics of the above Hamiltonian can be studied
via a pseudopotential decomposition of the two-body in-
teraction matrix elements VMM ′

mm′ = 〈mM | Ĥ |m′M ′〉 |λ=0

with m,M relative and center-of-mass guiding center
indices, and intra-MLL indices omitted. Approximate
center-of-mass conservation in (12) entails that the two-
body repulsion depends only on the relative coordi-
nate, VMM ′

mm′ ≈ Vmm′δMM ′ . Since the guiding center
index identifies with discrete rotational symmetries, it
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FIG. 1. (color online). (a-f) Real-space lattice guiding-center
wave functions for the ideal isotropic C = 3 model, evaluated
from (8). Insets depict analogous conventional LLL wave func-
tions. (g) Berry curvature Ωk (inset) and associated MLL
spectra for the FCI models discussed in the main text. m
is the guiding center index; dotted lines indicate ideal flat-Ω
spectrum εm = λCm

2π
. The C-fold degeneracy of MLLs reflects

the C-component basis for C > 1 models. The guiding-center
structure remains robust in the presence of fluctuations of Ωk.

is tempting to speak of an emergent continuous rota-
tional symmetry in the flat band – however, it per-
sists even for Vq anistropic; CN symmetry of Vq instead
constrains relative guiding center transitions Vm 6=m′ to
(m − m′)modN = 0. The dominant matrix elements
are thus well-captured by Haldane pseudopotentials [71]

Vm = 1
M
∑M
M=0 V

MM
mm |M→∞, which indicate stabiliza-

tion of FQH trial states.
The propensity of the MLL basis to lead to a well-

defined pseudopotential expansion for such models is a
key advantage of the first-quantized formalism. Treating
Ω(k) fluctuations as a perturbation with ladder operators

π̂i → âi, |m,M〉 = (â†rel)
m(â†cm)M |0, 0〉 /

√
m!M ! leads to

Vmm′ =

∫
dq
Vq(iq−)m−m

′
1F1

[
m+1

m−m′+1 ;− q+q−
k2B

]
km−m

′

B

√
2m+m′m′!/m!(m−m′)!

(13)

Here, 1F1(·) is the Kummer confluent hypergeometric
function. The well-known pseudopotentials of the con-
ventional FQHE can be readily recovered for m = m′,

q± = qx ± iqy with Vm = 2π
2m

∫
d2q VqLm(q2

Ω )e−q
2/Ω.

Isotropic ideal FCI models: While the focus so far has
been placed on developing an accurate language for the
generic anisotropic case, a key follow-up question con-
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FIG. 2. (color online). (a)-(c) Haldane pseudopotentials for
the C = 1 three-orbital and C > 1 ideal droplet models
(on-site and NN interactions). Only odd (even) pseudopo-
tentials determine interactions between same-species fermions
(bosons). Error bars quantify the residual center-of-mass M
variation, strongly suppressed for the ideal C = 2, 3 models
due to emergent conservation of guiding center. (d) Log plot
of guiding-center and SU(C) symmetry breaking in the inter-
acting problem with matrix elements V n1...n4

m1...m4
, quantified as

the ratio of the norm of ∆M = m1 +m2 −m3 −m4 (∆N =
n1 +n2−n3−n4 mod C component) symmetry-breaking and
-preserving two-body matrix elements. The guiding-center in-
dex identifies with C4 symmetry. (e) Role of broken rotational
symmetry on the lattice, depicted via leading-order V ′m,m+4

of generalized pseudopotentials V ′mm′ = 〈m,M |H |m′,M〉.

cerns instead applying above results to find an FCI analog
of the isotropic Landau level, particularly favorable for
FQH phases. Such models exist indeed: the isotropic case
ηµν , η̃µν = δµν with corresponding Fubini-Study metric
gxx − gyy, gxy = 0, tr g(k) = Ω(k) is uniquely satisfied by
any Bloch state that can be written without normaliza-
tion as a meromorphic function |ūk〉 =

∣∣ūkx+iky

〉
. The

number of poles in the BZ defines C [72]; periodic bound-
ary conditions in k restricts

∣∣ūkx+iky

〉
to elliptic func-

tions, constrained to C ≥ 2. Skew-anisotropic guiding
center metrics ensue from distortions of the lattice: for
instance, a ’squeezed’ FQH liquid with ηxx = 1/ζ, ηyy = ζ
follows from BZ strain deformations with kx → ζkx.

To illustrate our construction, we consider two multi-
orbital toy models on the square lattice for C = 2, 3 [75],
with the guiding-center basis of MLLs depicted in fig. 1:∣∣ūC=2

k

〉
=
[

1, α ℘(kx + iky)
]>

(14)∣∣ūC=3
k

〉
=
[

1, β ℘(kx + iky), γ ℘′(kx + iky)
]>

(15)

Here, ℘(z) is the Weierstrass elliptic function with peri-
ods 2π, 2πi and a second-order pole at the Γ point, and
α = 5.77, β = −7.64, γ = 6.73 are band structure param-
eters, chosen to minimize Berry curvature fluctuations.

The corresponding Bloch Hamiltonian is not unique;
a possible definition with flat bands is hC(k) =
1 −

∣∣ūCk〉〈ūCk∣∣ /〈ūCk∣∣ūCk〉. In general, hC(k) exhibits

long-ranged but exponentially-decaying hopping terms
[72] and acts as an artificial toy lattice model for FCI
states with topological order, much like the Hubbard
model truncated to nearest-neighbor (NN) hoppings
acts as a toy model for strongly-correlated states
with conventional order. While a classification of
such ideal FCI host lattice models remains an im-
portant open task, note that simple physical models
can emerge after truncation of irrelevant hoppings.
For instance, hC=2 is well-described by a canonical
d-wave lattice model hC=2(k) = d(k) · ~σ with d(k) =

[t(cos kx + cos ky), t(cos kx − cos ky), t′ sin(kx) sin(ky)]
>

with nearest- and next-nearest-neighbor hoppings.

Analysis: In addition to the ideal isotropic models
(14,15), we study both a conventional three-orbital C = 1
model on the square lattice [50] that does not satisfy
(10), and an “optimized” variant with flat Berry curva-
ture (var(Ωk) ≈ 10−6), obtained via adiabatically adding
symmetry-preserving hoppings up to 5th neighbor [63].

Fig. 2 depicts the pseudopotential decomposition for
on-site and NN repulsion, using the MLL basis of Fig.
1. The C = 2, 3 ideal lattice models display emer-
gent guiding-center and SU(C) symmetries, manifested
in a vanishing center-of-mass dependence of pseudopo-
tentials (figs. 2b, 2c), and suppression of symmetry-
breaking two-body interaction terms (fig. 2d). As an-
ticipated from (13), on-site repulsion results in a non-
zero pseudopotential only for V0, acting as an optimal
(221)-Halperin state [73] parent Hamiltonian for hard-
core bosons, whilst not stabilizing fermionic FQH states
[74]. The latter can be remedied by tuning NN repulsion
to tune V1, V3. The controlled expansion in pseudopo-
tentials is a key merit of this construction and highlights
that, contrary to common perception, the confluence of
flat Berry curvature and local interaction does not sta-
bilize a fermionic FQH liquid in an FCI. Conversely, the
non-optimal C = 1 models violate (10) and do not pin the
guiding-center metric to g. The guiding-center descrip-
tion (12) is incomplete, broadening the effective interac-
tion range with non-vanishing and decaying Vm with sub-
stantial center-of-mass deviation even for a purely local
interaction (fig. 2a) that persists even for uniform Berry
curvature. We stress that this highlights the shortcom-
ings of long-wavelength limit arguments [41–47] in pre-
dicting the microscopics of the FQHE on the lattice.

In summary, we introduced a first-quantized descrip-
tion of FCIs, with the FQHE emerging in a picture of
anisotropic momentum-space Landau levels in a fluctu-
ating magnetic field. We presented a novel class of ideal
FCI lattice models as duals of the isotropic FQHE and
demonstrated their optimality via an expansion of local
interactions into Haldane pseudopotentials which can be
determined straightforwardly in first quantization. A pri-
mary goal of this work is to establish a deeper microscopic
understanding of the stabilization of FQH states in flat
Chern bands - the resulting interplay of topology and ge-
ometry to determine long- and short-wavelength physics
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on the lattice serves as a natural application of the for-
malism of the anisotropic FQHE. The results presented
set a foundation for microscopic analysis of non-Abelian
phases on the lattice and extension to fractional topolog-
ical insulators.
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[60] B. Yang, Z. Papić, E. H. Rezayi, R. N. Bhatt, and F. D.
M. Haldane, Phys. Rev. B 85, 165318 (2012).

[61] R.-Z. Qiu, F. D. M. Haldane, X. Wan, K. Yang, and S.
Yi, Phys. Rev. B 85, 115308 (2012).

[62] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[63] See Supplemental Material at [URL will be inserted by

publisher], which includes Refs. [50, 64].
[64] V. Fock, Z. Phys. 47, 446 (1928); C. G. Darwin, Math.

Proc. Cambridge Philos. Soc. 27, 86 (1930); P. A.
Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108
(1990).

[65] F. D. M. Haldane, and E. H. Rezayi, Phys. Rev. B 31,
2529(R) (1985).

[66] Both the conventional and dual QH problems can be de-
scribed in terms of a pair of harmonic oscillators. The FCI
component index oscillator has no analogue in the con-
ventional FQHE; conversely, FQH ’left-handed’ (Landau
level) degrees of freedom have no analogues in FCIs.

[67] The energy penalty of a steep confinement potential is
approximately 〈m|(r/r0)u|m′〉 ∼ (C/r0)umu, hence a fi-
nite geometry with a certain filling ν may be selected by

truncating at a maximum guiding center index mmax.
[68] The general case follows from deformation of

eq+ω
µ∂kµ eq−ω̄

µ∂kµ and functions q±(q) to satisfy

T̂q |q→0 ≈ 1− iqµη̃µν(−i∂kν ) whilst ensuring translation

symmetry of (11).

[69] Equivalently, two-body eigenstates of π̂†relπ̂rel |m̃〉 =
εm̃ |m̃〉 display perfect center-of-mass degeneracy

π̂†relπ̂rel |m,M〉 ∼ m |m,M〉 only for
[
π̂rel, π̂

†
cm

]
→ 0.

[70] Weak breaking of SU(C) results from the non-
commutation of left- and right-handed oscillators in the
MLL problem for fluctuating magnetic field.

[71] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[72] C.-M. Jian, Z.-C. Gu, and X.-L. Qi, Phys. Stat. Sol. RRL

7, 154 (2013).
[73] B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[74] Even-n intra-component pseudopotentials Vn do not con-

tribute in the case of fermions due to Pauli exclusion.
[75] Details will be discussed in a forthcoming publication.


