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We study the transport properties of long quantum wires by generalizing the Luttinger liquid
approach to allow for the finite lifetime of the bosonic excitations. Our theory accounts for long-
range disorder and strong electron interactions, both of which are common features of experiments
with quantum wires. We obtain the electrical and thermal resistances and thermoelectric properties
of such quantum wires and find a strong deviation from perfect conductance quantization. We cast
our results in terms of the thermal conductivity and bulk viscosity of the electron liquid and give
the temperature scale above which the transport can be described by classical hydrodynamics.

PACS numbers: 71.10.Pm, 73.23.-b

Introduction.– The quantization of conductance ex-
hibited by quantum wires in multiples of G0 = 2e2/h
highlights the crucial role played by the confinement of
the electronic wave function in directions transverse to
the wire [1–4]. Quantum wires potentially represent a
window into the rich array of non-Fermi liquid phenom-
ena predicted for one-dimensional electron systems [4, 5].
The most direct means of probing such wires experimen-
tally is through their transport properties. In addition to
reduced dimensionality, aspects of these system which are
crucial to understanding these properties include strong
electron-electron interactions as well as slowly varying
disorder potentials which inevitably arise in the fabrica-
tion of such devices. While fabrication techniques are
now able to limit sources of short range disorder, such as
impurities in semiconductor heterostructure realizations,
long range disorder remains a feature of these systems
as it arises from the process of modulation doping used
to populate the two-dimensional electron gas from which
quantum wires are patterned [6].

At sufficiently high temperatures, the transport prop-
erties of electron liquids can be described by classical hy-
drodynamics [7]. This approach offers an ostensibly clas-
sical description of systems in cases for which the char-
acteristic length scale associated with violations of mo-
mentum conservation is much longer than the electron-
electron mean-free path. In one dimension, the conduc-
tance can be expressed in terms of the thermal conduc-
tivity κ and the bulk viscosity ζ of the electron liquid [7].

Ultimately, a complete theoretical description of these
wires requires a quantum mechanical treatment. The
case of weakly interacting electrons in a wire with long
range disorder has been studied [8]. However, the
applicability of this theory to experiments is limited
since electron-electron interactions in wires are typically
strong. A commonly employed theoretical framework
for studying interacting electrons in one dimension is
the Luttinger liquid (LL) formalism, a powerful non-
perturbative approach which can account for electron
interactions of arbitrary strength. In this framework,
the excitations of the electron liquid are described by

non-interacting bosons [4, 5]. The effects of short range
disorder on the conductance properties of a LL are well
understood [9–11], however the effects of long range in-
homogeneities have not been explored.

In this work, we study an inhomogeneous LL and cal-
culate its transport properties. Standard LL theory, in
which the bosonic excitations are infinitely long-lived,
predicts that the conductance of quantum wire remains
G0 even for strongly interacting electrons [12]. Account-
ing for the scattering of the bosonic excitations, we find
that the conductance is suppressed below G0. In ad-
dition to the electrical resistance, we obtain expressions
for the thermal resistance, the Peltier coefficient, and the
thermopower.

Our theory holds insofar as LL theory is applicable.
In particular, the temperature T must be lower than the
bandwidth D, which is typically on the order of the Fermi
energy of the electron liquid. We identify a temperature
scale T ∗ such that for T ∗ � T � D, our result for the re-
sistance of a quantum wire with weak disorder reduces to
that of the hydrodynamical theory [7]. An interesting as-
pect of our results is that although they differ from those
of classical hydrodynamics at low temperatures, T . T ∗,
they can still be expressed in terms of the thermal con-
ductivity κ and bulk viscosity ζ of the electron liquid.
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FIG. 1: Sketch of an inhomogeneous quantum wire in contact
with Fermi liquid leads with temperatures T and T + ∆T
and electrochemical potentials µ̄ and µ̄ + eV . The arrows
indicate the flow of energy and electric currents, denoted by
jE and I, respectively. The shading in the wire indicates
the non-uniform electron density, n(x). The length scale d
characterizes typical variations of the electron density.
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The system of interest is shown in Fig. 1. For clarity
and simplicity of presentation, we focus on the case of
a Galilean invariant spinless electron liquid, and briefly
discuss the generalization to spinful and multi-channel
LLs as well. We consider an inhomogeneous LL in which
the electron density n(x) has spatial variations of charac-
teristic length d � n−1. On length scales much smaller
than d, segments of the wire can be treated as uniform
LLs.

Uniform Luttinger liquid.– In the LL approximation,
particle-hole excitations of the electron system are de-
scribed by non-interacting bosons. The number of right-
and left-moving electrons (denoted by NR/L) is held
fixed. The Hamiltonian and the momentum of the LL
are given by

H =
∑
p

εpb
†
pbp +

π~
2L

[
vN (N −N0)

2
+ vJJ

2
]
, (1)

P =
∑
p

pb†pbp + pFJ, (2)

where N = NR + NL, J = NR − NL, and b†p creates a
bosonic excitation of momentum p and energy εp. The
Fermi momentum is proportional to the electron density,
i.e. pF = π~n. The quantity N0 represents a fiducial
number of electrons in the system. The velocities vN
and vJ are renormalized from the Fermi velocity by the
interactions [5].

Standard LL theory holds that the bosons have an
acoustic spectrum εp = v|p|, where v depends on the
interaction strength. While this description is appropri-
ate for a liquid at rest, the spectrum is altered by bulk
motion of the fluid. For a fluid moving with velocity vd,
Galilean invariance gives that the spectrum in the lab
frame is εp = v|p|+ vdp. This is consistent with the fact
that in the lab frame, the right- and left-moving excita-
tions have velocities ±v + vd, respectively.
Equilibration processes.– Hamiltonian (1) is not ex-

act [5] amd perturbations, although weak, play an im-
portant role in establishing equilibrium [5, 13–17]. These
perturbations fall into two categories [17]. Perturba-
tions of the first type arise from the non-linearity of
the fermionic spectrum. These terms, which conserve
the momentum of the bosons, have the form b†kbpbq,

b†pb
†
qbp′bq′ , etc. and endow the bosonic modes with finite

lifetimes. The second type of perturbation describes the
backscattering of an electron (J → J ± 2) and involves
an exchange of momentum between the bosons and the
zero mode J [see Eq. (2)].

Collisions among the bosons arising from the first type
of perturbation occur at a rate τ−10 which is expected to
scale as a power of temperature [14–16]. These processes
lead to a partially equilibrated distribution function

Np =
1

e(εp−up)/T − 1
, (3)

where the parameter u fixes the value of the total mo-
mentum of the bosons. Physically, u is the velocity of
the gas of the bosonic excitations. Given the linearity
of the spectrum, u can also be interpreted as parame-
terizing the temperature difference between the left- and
right-moving bosons.

Equation (3) does not describe a fully equilibrated liq-
uid. At full equilibrium, the velocity of the bosons u
equals the velocity of the electronic fluid vd [17]. For
u 6= vd, processes associated with perturbations of the
second type allow the velocity u to relax to vd,

u̇ = −u− vd
τ

. (4)

The mechanism of relaxation requires that a hole pass
through the bottom of the band and thus the rate has
an Arrhenius activated form τ−1 ∝ e−D/T , where the
activation energy is on the order of the bandwidth of the
system [17]. A detailed calculation of τ is given in [18].

The following analysis applies in the regime T � D
for which τ � τ0 and thus the local distribution function
of bosons is given by Eq. (3) with a slowly varying u and
T . Our calculation of the transport properties of the LL
involves the evaluation of the temperature gradient by
tracking the momentum of the gas of excitations. We
work in the linear response regime and thus retain any
terms linear in u or vd. The momentum density of bosons
with occupation numbers Np given by Eq. (3) is

ρP =

∫ ∞
−∞

dp

h
pNp =

πT 2

3~v3
(u− vd) . (5)

The momentum current of the gas of excitations is

jP =

∫ ∞
−∞

dp

h
vppNp =

πT 2

6~v
, (6)

where vp = sgn(p)v + vd. We will also make use of the
energy density and current which are given by ρE = jP
and jE = Ts0nu, expressions valid to linear order in u
and vd. Here, s0 is the entropy per particle of a fluid in
full equilibrium, s0 = πT/3~nv.

Taking a time derivative of Eq. (5) yields

ρ̇
(κ)
P = − πT

2

3~v3
u− vd
τ

= −s0n
κ

(
jE −

Ts0I

e

)
, (7)

where we have used the expression (4) for u̇ and the fact
that v̇d = 0. The quantity κ = πTvτ/3~ has been intro-
duced; we will see below that κ is the thermal conduc-
tivity of the electron liquid. Because relaxation is due to
the backscattering of electrons, conservation of the total
momentum (2) requires that

ṅR = −ρ̇(κ)P /2pF , (8)

where ṅR is the change in the number of right-movers
per unit length, i.e. ṄR =

∫
dx ṅR.
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Inhomogeneous LL.– We now consider the effect of in-
homogeneities of the LL characterized by the spatial vari-
ations of the electron density n(x). We assume that the
scale of the inhomogeneities is large, i.e. d� vτ0. In this
limit, the boson distribution function in the wire is de-
scribed by Eq. (3) with spatially varying u and T . While

ρ̇
(κ)
P involves a redistribution of the momentum between

the bosons and the zero modes, inhomogeneities lead to
a loss of the total momentum of the liquid.

Due to the fact that the velocity v is controlled by the
electron density, the spatial dependence of n(x) leads
to spatial variations in the velocity v(x). The break-
ing of translational invariance gives rise to changes in
momentum of a boson propagating ballistically through
the system. In order to calculate the resultant contri-
bution to ρ̇P , we consider a semiclassical description of
the bosons in which their energy εp(x) is a function of
momentum and position. Hamilton’s equations of mo-
tion give, ṗ = −∂xεp = −∂xv|p| − (∂xvd)p. This gives
rise to a change of the momentum density of the gas of
excitations

ρ̇
(0)
P =

∫
dp

h
ṗNp = − πT

2

6~v2
∂xv, (9)

with no terms linear in u or vd appearing.
In addition to changing the momentum of ballistically

propagating bosons, inhomogeneities give rise to scat-
tering processes which also result in a contribution to
ρ̇P . In these dissipative processes, right-moving bosons
scatter off inhomogeneities and become left-movers [19].
The reverse process also occurs, though not at the same
rate. The effective temperatures of the right-(R) and
left-(L) moving bosons described by Eq. (3) are given
by TR/L = T/ [1− u/(±v + vd)]. As a result of these
scattering events, energy flows from the warmer subsys-
tem (R) to the cooler one (L) as right-moving bosons are
converted to left-movers. For u = 0, the effective temper-
atures of the two branches of bosons are equal, TR = TL.
This implies that for u � v, the rate at which momen-
tum is lost is proportional to u. Since these processes are
driven by inhomogeneities, the scattering amplitude must
be proportional to d−1 ∼ ∂xn/n, i.e. the inverse length
scale characterizing the disorder, while the correspond-
ing rate is proportional to the square of this quantity.
Therefore, we obtain

ρ̇
(ζ)
P = −ζ

(
∂xn

n

)2

u, (10)

where we have introduced a parameter ζ with units of
momentum. That ζ is indeed the bulk viscosity will be
demonstrated in our discussion of the transport proper-
ties. In contrast to Eq. (7) which describes the exchange
of momentum between the bosons and the zero modes,
Eq. (10) represents a net loss of the momentum of the
full electron liquid as bosons scatter off inhomogeneities.

The arguments leading to Eq. (10) are quite general
and this result holds for multi-channel Luttinger liquids.
For the particular case of a fully equilibrated, single chan-

nel LL, ρ̇
(ζ)
P was evaluated in Ref. [19]. The result is

consistent with Eq. (10) provided

ζ =
Tv

4

(
∂n
n

v

)2
. (11)

The bulk viscosity captures the response of a fluid to
changes in its density and thus it is quite natural that
Eq. (11) involves a derivative with respect to n.
Transport properties.– The derivation of the transport

coefficients requires that we relate ∆T and V to the en-
ergy and electric currents, jE and I (see Fig. 1). The
temperature gradient can be obtained by tracking the
momentum of the gas of excitations. In the steady-state
regime, ∂tρP = 0, and thus the gradient of momentum
current obeys

∂xjP = ρ̇
(0)
P + ρ̇

(κ)
P + ρ̇

(ζ)
P . (12)

In thermal equilibrium, u = vd = 0 and Eqs. (7) and

(10) require that ρ̇
(κ)
P and ρ̇

(ζ)
P vanish. Thus, we have

∂xjP = ρ̇
(0)
P . Indeed, Eqs. (6) and (9) satisfy this relation

for ∂xT = 0, as is necessarily the case for a system in
thermal equilibrium.

For a system out of equilibrium, Eqs. (7) and (10) show

that ρ̇
(κ)
P and ρ̇

(ζ)
P contribute terms linear in jE = Ts0nu

and I = envd to the right-hand side of Eq. (12). However,
jP has no linear correction in these quantities. The only
way that Eq. (12) can be satisified is for the temperature
to acquire a spatial gradient. Substituting jP [Eq. (6)]
into Eq. (12) reveals that the temperature gradient of the
LL is

∂xT = −jE
κ

+
Ts0I

κe
− ζ

Ts20

(
∂x

1

n

)2

jE . (13)

For I = 0, Eq. (13) establishes that κ, as defined after
Eq. (7), is the thermal conductivity of a uniform electron
liquid. The last term in Eq. (13) shows that spatial vari-
ations in n(x) give a correction to the thermal resistivity
of the system.

We now demonstrate that the quantity ζ is the bulk
viscosity of the electron liquid. In order to make this
identification, we consider an arbitrary point x0 along the
wire and adjust the currents such that jE/Ts0(x0) = I/e.
This relation ensures that u(x0) = vd(x0) and thus the
electron liquid is fully equilibrated at this point. In order
to maintain steady-state flow, a force must be applied to
counteract the damping force (10). Denoting this force
(per electron) by f (ζ) and considering the small segment
of the wire between the points x0±∆x/2 containing ∆N

electrons, we have f (ζ)∆N = −ρ̇(ζ)P ∆x. The power dissi-

pated is then given by ∆W = f (ζ)vd∆N = −vdρ̇(ζ)P ∆x.
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Using Eq. (10) with u = vd and the continuity equation
∂x(nvd) = 0, we find that

dW

dx
= ζ(∂xvd)

2. (14)

This equation represents the dissipation in a fluid due
to its bulk viscosity [20], thus confirming the physical
meaning of ζ.

We now consider the effects of contacts on the trans-
port properties of the wire. The leads control the dis-
tribution function of the excitations entering the wire.
For example, the temperature of the left lead coincides
with the temperature of the right-moving excitations at
x = 0. The latter is not given by T (0), but rather by
T (0)/(1− u/v). Therefore, there is a mismatch between
the temperature of the leads and the temperature of
the bosons at the end of the wire. This effect is fully

accounted for by the contact thermal resistance R
(0)
T .

Adding the temperature drop R
(0)
T jE due to the contacts

and −
∫
∂xTdx [using Eq. (13)] gives

∆T = R
(0)
T jE +

∫ L

0

dx

[
jE
κ
− Ts0I

κe
+

ζ

Ts20

(
∂x

1

n

)2

jE

]
,

(15)

where R
(0)
T = 6~/πT [21].

The electric current through a single conductance
channel (appropriate for spinless electrons) is given by
I = e2V/h. Accounting for electron backscattering, we
have I = e2V/h + eṄR, which may be derived by con-
sidering electron current conservation [17]. Solving for V
and substituting Eqs. (7) and (8) into ṄR =

∫
ṅRdx, we

obtain

V = R(0)I − 1

e

∫ L

0

s0
κ

(
jE −

Ts0I

e

)
dx, (16)

where R(0) = h/e2.
Equations (15) and (16) relate {∆T, V } to the cur-

rents {jE , I}. The currents are independent of position
and can be factored out of the integrals. The various
transport coefficients will now be expressed as integrals
of the density n(x), s0(x), κ(x), and ζ(x) over the length
of the system.

The thermal resistance is defined at zero current and
is given by RT = ∆T/jE . Equation (15) with I = 0 gives

RT = R
(0)
T +

∫
dx

κ
+

1

T

∫
ζ

s20

(
∂x

1

n

)2

dx. (17)

The Peltier coefficient is the ratio of energy current to
electric current, i.e. Π = jE/I, when the left and right
leads are at the same temperature. Setting ∆T = 0 in
Eq. (15) and solving for the ratio of currents yields

Π =
T

eRT

∫
s0
κ
dx. (18)

Since Π ∝ u/vd, this coefficient is directly informed
by the competition between the processes described by
Eqs. (7) and (10). The thermopower is defined to be
S = −V/∆T with I = 0 and is straightforwardly ob-
tained by dividing Eq. (16) by Eq. (15). We find that
S = Π/T , in accordance with the Onsager relations [22].

Of central interest in experimental realizations of quan-
tum wires is the resistance, R = V/I, defined for ∆T = 0.
By substituting jE = ΠI into Eq. (16), we obtain

R = R(0) +
T

e2

[∫
s20
κ
dx− 1

RT

(∫
s0
κ
dx

)2
]
. (19)

Expressions (17), (18), and (19) give a complete descrip-
tion of the transport properties of an inhomogeneous LL
at temperatures below D and represent our primary re-
sult.

The deviation of the resistance (19) from R(0) ulti-
mately arises from scattering of the bosonic excitations.
References [12] do not account for such processes and
predict no corrections to R(0). This result is recovered
by taking κ ∝ τ → ∞ in Eq. (19). For finite κ, correc-
tions to R(0) arise. In the special case of a uniform wire,
Eq. (19) predicts a small correction to the resistance con-
sistent with Ref. [17]. In wires with long range disorder,
the corrections to R due to inhomogeneities will be pro-
portional to the length of the wire. Thus, in sufficiently
long wires with disorder, R� R(0) will be achieved.

We now establish the conditions for which Eq. (19)
agrees with the corresponding result of hydrodynamics.
For long wires, Eq. (19) reduces to Eq. (4) of Ref. [7]
provided

ζvτ

~

(
~v
Td

)2

� 1, (20)

and the variations of the density are small along the
wire, i.e. ∆n � n. The condition (20) is controlled by
the competition between the long characteristic length
scale of the inhomogeneities d and the exponentially long
timescale τ ∼ eD/T associated with electron backscatter-
ing. The breakdown of the hydrodynamic theory occurs,
to logarithmic accuracy, at a temperature

T ∗ ' D

2 ln (nd)
. (21)

Thus, in the temperature range T ∗ � T � D, the trans-
port theory of Ref. [7] based on classical hydrodynamics
applies to a quantum degenerate system.

The temperature dependence of the resistance (19)
represents an important prediction of our theory. Since
R−R(0) ∝ τ−1 ∝ e−D/T , the resistance increases mono-
tonically with temperature. The opposite behavior is ex-
hibited by corrections to the resistance arising from weak
short range disorder [9–11]. So far, resistances increasing
with temperature have been seen in conductance mea-
surements of quantum point contacts [23, 24], systems
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in which the effects of impurities are easier to eliminate.
Observation of such behavior in long wires would repre-
sent a confirmation of our theory.

Discussion.– In this work, we have calculated the
transport properties of a quantum wire with arbitrarily
strong electron-electron interactions in the presence of
long range disorder. The theory requires T � D, while
the condition d� vτ0 limits T from below. For T � T ∗,
Eq. (19) reduces to the result given by classical hydro-
dynamics in the regime of small density fluctuations [7].
For the case of weak disorder considered here, Eq. (19) re-
mains valid far below T ∗ and thus captures the crossover
behavior at T ∼ T ∗. This work is readily generalized to
spinful and other multi-channel electron liquids by taking

appropriate values of R(0), R
(0)
T , s0, κ, and ζ. From the

vantage point of this more microscopic theory, we find
that tacit to the hydrodynamic result is the requirement
that the spatial variations in the density are small.
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