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The on-chip generation of non-classical states of light is a key-requirement for future optical
quantum hardware. In solid-state cavity quantum electrodynamics, such non-classical light can be
generated from self-assembled quantum dots strongly coupled to photonic crystal cavities. Their
anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon
level, where the admission of a single photon into the cavity may enhance (photon-tunnelling)
or diminish (photon-blockade) the probability for a second photon to enter the cavity. Here, we
demonstrate that detuning the cavity and QD resonances enables the generation of high-purity
non-classical light from strongly coupled systems. For specific detunings we show that not only the
purity but also the efficiency of single-photon generation increases significantly, making high-quality
single-photon generation by photon-blockade possible with current state-of-the-art samples.

Due to their strong interaction with light and ease
of integration into optoelectronic devices, self-assembled
quantum dots (QDs) are promising candidates for quan-
tum light sources [1]. High-fidelity single-photon genera-
tion from QDs for off-chip applications has been demon-
strated under both non-resonant [2] and resonant [3–5]
excitation. Some of these experiments have employed
micro-pillar cavities [6], etched [7] or epitaxially grown
photonic nanowires [8] for enhanced light off-chip ex-
traction efficiency. On the other hand, photonic crystal
cavities provide a promising on-chip route toward opto-
electronic integration of QDs due to the established set
of associated integrated waveguide and detector struc-
tures [9, 10]. Such structures will be able to exploit
strong light-matter coupling with QDs for the genera-
tion of a variety of on-chip non-classical light states by
various quantum-electrodynamical (QED) methods, and
recent exotic proposals have even explored the possibil-
ity of releasing energy exclusively in bundles of n-photons
[11]. The phenomena of photon-tunnelling and photon-
blockade in strongly coupled systems have been experi-
mentally demonstrated both for the case of the QD on
resonance [12–14] and near resonance [15] with the cavity
(and likewise, only for resonant atom-cavity system [16]).
However, in the case of large detuning these effects have
only been investigated theoretically [17].

In this letter, we demonstrate the feasibility of per-
forming photon-blockade at significant detuning, and in-
deed the importance of doing so for high-purity and high-
efficiency operation. We show that by detuning the QD
and cavity resonances while operating in the photon-
blockade regime, the second-order autocorrelation func-
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tion (g(2)(0)) of the light transmitted through the cav-
ity decreases from g(2)(0) = 0.9 ± 0.05 to g(2)(0) =
0.29 ± 0.04. Simulations of the second- and third-order
autocorrelation functions for our system are in excellent
agreement with the measurements, and they reveal that
not only does the quality of the single photon stream
increase, but that the absolute probability of obtaining
a single photon increases by a factor of ∼ 2. Further-
more, we show that the values we obtain for g(2)(0) are
only limited by the system parameters (QD-cavity field
coupling strength g and cavity field decay rate κ), and
that high-quality single-photon emission is within reach
for current state-of-the-art samples for specific cavity and
QD detunings.

The sample investigated is schematically illustrated in
figure 1a and consists of a layer of low density InAs QDs
grown by molecular beam epitaxy and embedded in a
photonic crystal L3 cavity [18]. The energy structure of
a QD strongly coupled to a cavity is well described by
the Jaynes-Cummings (JC) Hamiltonian

H = ωaa
†a+ (ωa + ∆)σ†σ + g(a†σ + aσ†) (1)

where ωa denotes the frequency of the cavity, a the an-
nihilation operator associated with the cavity mode, σ
the lowering operator of the quantum emitter, ∆ the
detuning between quantum emitter and cavity, and g
the emitter-cavity field coupling strength. The result-
ing eigenenergies, the Jaynes-Cummings-ladder dressed
states, are illustrated in figure 1b. For n photons in the
cavity the energy is nωa (red lines), and the energy of
the quantum emitter (orange) varies with a detuning pa-
rameter. Due to the coupling, the resulting energy eigen-
states are the anticrossing polariton branches. At reso-
nance, the splitting is given by 2g

√
n (with n being the

index of the rung). While this letter explicitly discusses
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FIG. 1. (a) Schematic illustration of self-assembled QDs em-
bedded in a photonic crystal cavity. (b) Jaynes-Cummings
ladder obtained from equation 1 (c) Cross-polarised reflectiv-
ity spectrum of the coupled QD-cavity system obtained for
tuning the QD through the cavity resonance. (d) Energies
for exciting the n-th rung of the Jaynes-Cummings ladder in
an n-photon process. (e) Transient energies for climbing the
Jaynes-Cummings-ladder rung by rung. Transitions from up-
per and lower polaritons are colour coded in blue and green,
respectively. In panels (d) and (e) the energy of the bare cav-
ity was subtracted from all transitions for better comparison.
∆ is the QD-cavity detuning and g the coupling strength.

the case of a QD in a photonic crystal cavity, the same
physics holds for a large number of systems such as those
formed by atoms [19, 20] or superconducting circuits [21].

For QDs, the anticrossing that results from the cou-
pling to a cavity can be efficiently studied in optical spec-
troscopy experiments, where the QD and cavity detun-
ing is controlled by the lattice temperature [22, 23]. The
result of such a measurement is presented in figure 1c,

which shows the transmission through the cavity mea-
sured in a cross-polarised reflectivity configuration [24]
in the temperature range T = 31 − 38 K. A clear an-
ticrossing provides evidence of strong coherent coupling
between QD and cavity. A fit (not shown here) reveals a
coupling strength of g/2π = 10.9 GHz and a cavity field
decay rate κ/2π = 10.0 GHz.

Due to the unequal energy spacing (anharmonicity)
of the Jaynes-Cummings ladder, transmission of a laser
through the cavity affects the beam’s photon statistics
and introduces strong photon correlations [12, 15]. This
is schematically illustrated by the solid blue arrows in
figure 1b; if the laser is tuned into resonance with one of
the polariton branches of the first rung, it cannot excite
the system to the second rung due to the ladder anhar-
monicity. Therefore, in this regime the transmitted beam
consists of a series of single photons and hence is called
the photon-blockade regime. However, the fidelity of this
process is inherently limited by the transition linewidth,
given by the cavity field κ and quantum emitter γ de-
cay rates. In particular, due to final state broadening
and the shorter lifetime of excited states, transitions to
higher rungs have larger linewidths, further reducing the
probability of generating single photons.

Importantly, operating the system at a significant QD-
cavity detuning can lead to higher-purity single-photon
emission. We consider two cases to support this conclu-
sion: the excitation of a higher rung in a multi-photon
process and subsequent excitation. Therefore, we plot
the energies for an n-photon excitation of the n-th rung
in figure 1d and the transient energies from one rung to
the next in figure 1e. Clearly, at zero detuning the ener-
gies for exciting the first and higher rungs are close to-
gether (figure 1d), and their separation strongly increases
for the upper (lower) polariton branch for positive (neg-
ative) detunings of the quantum emitter. For a laser in
resonance with the first rung the probability of n-photon
excitation of higher rungs decreases with increased de-
tuning. Similar scenarios can be found for subsequent
climbs up the ladder, as presented in figure 1e, which
shows the transition energies from the ground state to
the first rung, the first to the second rung and the sec-
ond to the third rung as solid, dashed and dotted lines,
respectively. Transitions from an upper (lower) polariton
branch to higher rungs are colour coded in blue (green).
Near resonance the first and second transitions are close
in energy but their separation strongly increases with the
detuning of the quantum emitter (c.f. blue arrows in fig-
ure 1b). The close proximity of the first rung to the
outer higher order transitions for large detunings does
not reduce the single-photon emission character, since
these transitions occur from the other polariton branch
as can be seen from the different colours. Therefore, a
detuning between quantum emitter and cavity is also ex-
pected to improve the purity of single-photon generation
under photon-blockade for subsequent rung excitation.
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FIG. 2. g(2)(0) as function of the laser detuning for a set of
different QD-cavity detunings: (left) experiment and (right)
simulation. With increased detuning the depth of the anti-
bunching is more pronounced. Vertical lines represent the
relevant transition energies of the JC ladder as described in
figure 1.

Furthermore, detuning also affects the linewidths of the
states in such a way that the linewidth of a polariton
branch that evolves towards the bare QD (bare cavity)
transition decreases (increases). This further reduces the
overlap of transitions involving different rungs of the JC
ladder and increases the fidelity of photon-blockade (see
supplemental material).

To quantify the quantum character of light the second-
order autocorrelation function [25, 26]

g(2)(0) =
〈m(m− 1)〉
〈m〉2

(2)

is a commonly used quantity, where m signifies a num-
ber of detections in the photocount distribution. It re-
sults in a g(2)(0) of 1 for a coherent source and 0 for a
perfect stream of single photons. To test our expecta-
tion that the purity of single-photon generation under
photon-blockade can be improved by detuning the QD
and cavity resonances, we measured g(2)(0) from the out-
put correlations of a laser beam transmitted through the
cavity. The result of these experiments is presented in
the left part of figure 2 that shows g(2)(0) as a function

of the laser detuning for six different QD and cavity de-
tunings. The data were recorded under pulsed excitation
with tp = 30 ps long pulses. This pulse duration was cho-
sen as a compromise between frequency resolution and
avoiding re-excitation of the system. In the case of ∆ ≈ 0,
the form of g(2)(0) is nearly symmetric with photon tun-
nelling generating a maximum of g(2)(0) = 1.45 ± 0.05
in the centre, and photon-blockade generating a mini-
mum dip of g(2)(0) = 0.85± 0.05 (g(2)(0) = 0.92± 0.05)
at the laser detuning of 1.5g (−1.5g). When detuning
the QD, the maximum of g(2)(0) shifts such that it stays
between the polariton branches before it disappears for
detunings greater than ∼ 4g. The dip of g(2)(0) both
moves with and shifts toward the polariton branch that
is closer to the bare QD transition. Most strikingly, the
depth of the dip increases and reaches a value as low
as g(2)(0) = 0.45 ± 0.05 for the detunings of ∆ = 2.7g
and ∆ = 4.4g. This value is lower than 0.5, indica-
tive of strong single-photon character, and lower than
g(2)(0) measured in any prior photon-blockade experi-
ments in the solid state. We note here that since the
lifetime of the polariton branch closer to the bare QD
transition increases with detuning (for details see sup-
plemental material), excitation with 70 ps long pulses
was possible without re-exciting the system at detun-
ings of ∆ = 3 − 5 g, further reducing antibunching to
g(2)(0) = 0.29± 0.04 (see supplemental material). Small
asymmetries in the experimental measurements result
from the wavelength dependence of the cross-polarized
laser suppression, asymmetries in the spectral shape of
the laser pulse, drift of the QD-cavity detuning, and tem-
perature tuning between curves.

To support our findings, we performed quantum opti-
cal simulations using a quantum trajectory method (see
supplemental material). The results of these simulations
are presented on the right side of figure 2. Overall, the
simulations are in excellent qualitative agreement with
the measurements and also quantitatively resemble the
values measured in the photon-blockade regime. Only
small differences exist: the measured maximum values of
g(2)(0) are slightly lower than the simulated ones. This
can be explained by blinking of the quantum emitter [15],
which was not included in the simulations.

To further investigate the single-photon character of
the light transmitted through the cavity we performed
measurements of the third-order autocorrelation func-
tion g(3)(0) = 〈m(m−1)(m−2)〉

〈m〉3 , as higher-order autocor-

relations are necessary to characterise the multi-photon
nature of non-classical light [27]. The result of these mea-
surements are presented in figure 3a, which shows g(2)(0)
and g(3)(0) as a function of the laser detuning for the
case of QD-cavity detuning of ∆ = 0 (left) and ∆ = 2.8g
(right). Clearly, g(3)(0) shows the same qualitative shape
as g(2)(0) but with stronger non-classical values. Simu-
lations of these autocorrelations are presented in figure
3b and show good agreement with the measurements. In
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FIG. 3. (a) Measured second- and third-order autocorrelation
functions as a function of the laser detuning for a QD detuning
of ∆QD = 0 (left) and ∆QD = 2.8g (right). (b) Simulation for
the experimental conditions presented in (a). (c) Simulated
probabilities for having n = 0 − 3 photons in the output of a
pulse transmitted through the cavity. Clearly, for a detuning
of ∆QD = 2.8g (right) P1 (red) exhibits a pronounced peak.

particular, for the photon-blockade regime the values of
g(3)(0) are lower than those of g(2)(0), indicating that
g(2)(0) is mainly limited by two-photon events and not
higher photon events.

Since the agreement with the measured autocorrela-
tion functions is very good, we can rely on the simula-
tions to explicitly access quantities only within reach of
the theory, such as the probabilities Pn of transmitting n
photons per excitation pulse through the cavity. These
probabilities are presented in figure 3c for n = 0− 3 un-
der the same conditions as the data presented in figure
3a and 3b. Interestingly, we find that in the case of zero
QD and cavity detuning (figure 3c left), we see signifi-
cant contributions of one, two and three-photon events
for all laser detunings. In fact, the probability for two-
photon events (blue) actually dominates over the prob-
ability for single photons (red) in the case of the best
photon-blockade. In strong contrast, for a QD-cavity de-
tuning of ∆ = 2.8g (figure 3c right) and operation in
the photon-blockade regime, single-photon events (red)
strongly dominate over two-photon events (blue) and
the probability for three-photon events (purple) becomes
negligible. Most strikingly, in the detuned case, not only
does the quality of the single-photon stream increase, but
the absolute probability of finding a single photon in the
transmitted laser pulse increases by a factor of ∼ 2. In
addition to the agreement between measured and simu-
lated values for both g(2)(0) and g(3)(0), the experimental

count rates support this finding. Since the overall count
rate is proportional to

∑
nPn, it does not directly cor-

respond to the overall single-photon efficiency. However,
we can still calculate the ratio of the count rates at differ-
ent detuning conditions in order to compare simulation
and experiment. For the points of best photon blockade
in the resonant and detuned case, our simulated count
rates result in a ratio of 2.27 : 1.05 = 2.16, which is in
very good agreement with the measured ratio of 4× 104

: 1.8× 104 = 2.22.

This counter-intuitive finding that the efficiency of
single-photon generation increases when detuning cavity
and QD can be understood in the following way: Photon-
blockade is obtained if the first rung of the JC ladder is
excited while the overlap of the laser with higher rungs
is suppressed. When on-resonance this suppression is in-
herently limited by the linewidth of the transitions, that
scales with n as the decay rate of a rung is proportional
of the number of photons. Meanwhile, the detuning of
subsequent rungs scales with

√
n (see supplemental mate-

rial). Therefore, for any system parameters κ and g that
can be achieved with the emitter and cavity in resonance,
there will always be an overlap between the transition to
the first rung and to higher climbs up the ladder. As
a result, the strongest photon-blockade with the emitter
and cavity in resonance is not observed for the laser ex-
actly on resonance with the first rung of the JC-ladder
(∼ ±g), but rather with the laser off-resonant and de-
tuned to ∼ ±1.5 g (c.f. figure 3 - left). In contrast, if
the separation between different JC rungs is enhanced by
detuning the emitter and cavity, the strongest photon-
blockade is obtained with the laser resonant with the
polariton branch, making photon-blockade more efficient
than in the resonant case. Therefore, not only the pu-
rity but also the efficiency of single-photon generation
improves given the correct detuning between cavity and
emitter. With increasing detuning between the QD and
cavity, the oscillator strength of the more QD-like polari-
ton branch decreases as the oscillator strength of the QD
is much weaker than the one of the cavity. Therefore, for
too large detunings the efficiency decreases, resulting in
an optimum detuning for single-photon generation of a
few g (see supplemental material).

This approach to photon-blockade has strong poten-
tial for single-photon generation under already achiev-
able system parameters. Improvements in the spatial
alignment of the QD and cavity field have enabled the
coupling strength to reach values up to g/2π = 40 GHz
[28]. Recent nanofabrication improvements have allowed
for experimental GaAs photonic crystal cavity loss rates
as low as κ/2π = 4.0 GHz[29]. When using these param-
eters in our simulations we obtain g(2)(0) = 0.1 in the
photon-blockade regime, and an absolute probability of
over 90% for single-photon emission, demonstrating that
high-quality single-photon streams generated by photon-
blockade are within reach.
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In summary, we have demonstrated that QD-cavity de-
tuning is a key ingredient for high-purity generation of
non-classical light from strongly coupled systems. We
have shown that detuning strongly reduces the spec-
tral overlap with higher rungs of the Jaynes-Cummings-
ladder and hence greatly improves the generation of sin-
gle photons by photon-blockade. We have presented
quantum-optical simulations that are in excellent agree-
ment with our measurements and show that high-quality
single-photon generation under photon-blockade is pos-
sible with current state-of-the-art samples. The gener-
ation of single photons by photon-blockade might have
advantages over other techniques. First, the use of high
quality photonic crystal cavities promises a method of on-
chip routing of the photons by coupling them to photonic
crystal waveguides (with high efficiency) [30]. Second,
the cavity emission rate is at least one order of magni-
tude faster than the bare QD emission rate, resulting in a
comparable increase in the maximum single-photon gen-
eration rate while maintaining potential advantages from
resonant excitation. Furthermore, the successful experi-
mental demonstration of photon-blockade in the detuned
light-matter configuration demonstrates the feasibility of
operating cavity QED in such an extreme regime and
paves the way for a wealth of other quantum light sources,
including those generating n-photon states [11].
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