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Fluctuations in non-equilibrium steady states generically lead to power law decay of correlations
for conserved quantities. Embedded bodies which constrain fluctuations in turn experience fluctua-
tion induced forces. We compute these forces for the simple case of parallel slabs in a driven diffusive
system. Our model calculations show that the force falls off with slab separation d as kBT/d (at
temperature T , and in all spatial dimensions), but can be attractive or repulsive. Unlike the equilib-
rium Casimir force, the force amplitude is non-universal and explicitly depends on dynamics. The
techniques introduced can be used to study pressure and fluctuation induced forces in a broad class
of non-equilibrium systems.

External objects immersed in a medium may mod-
ify the underlying fluctuations and in turn experience
fluctuation–induced forces (FIF) [1]. The textbook exam-
ple is the Casimir force [2, 3] arising from quantum fluc-
tuations of the electromagnetic field. Its thermal analog
in critical systems [4] has been observed in binary liquid
mixtures [5, 6], 4He films [7, 8] and liquid/vapor coex-
istences [9]. In both cases, quantum and classical, the
underlying fluctuations are long-range correlated leading
to forces that fall off as power laws. In the latter (for ex-
ample, in an oil/water mixture) this is achieved by tuning
to a critical point, while the former is a consequence of
the massless nature of the photon field. Generically in a
fluid in equilibrium, correlations (and hence FIF) decay
exponentially and are insignificant beyond a correlation
length.

Non-equilibrium situations provide another route to
long-range correlated fluctuations: Systems which in
equilibrium have zero or short-ranged correlations (Ceq ∼
δs(x) in s dimensions), quite generically exhibit power
law correlations (Cneq ∼ 1/|x|α) with conserved dynam-
ics when out of equilibrium [10–12]. It is thus natural
to inquire about the nature (strength and range) of FIF
in corresponding non-equilibrium settings (where there is
no matching force in equilibrium). Such forces have in-
deed been explored in a number of circumstances, includ-
ing driven granular fluids [13–16], shear flow [17], active
matter systems [18], and in ordinary fluids due to Soret
effect [19] or subject to a temperature gradient [20, 21].
However, despite these studies they are much less under-
stood than other FIF.

Here, we explore FIF in diffusive systems which are
far from thermal equilibrium. We first consider in detail
possibly the simplest (and hence analytically tractable)
example of FIF in a system of diffusing particles which
are subject only to hard core exclusion. The model is
commonly referred to as the symmetric simple exclusion
process (SSEP) [22]. We then present perturbative results
for general diffusive systems. The methods introduced
can be used to investigate a large variety of models.

The setups examined are: (a) The two dimensional

system shown in Fig. 1(a); infinite in the y direction and
connected to two reservoirs at x = 0 and x = L, with
densities ρ(0, y) = ρl and ρ(L, y) = ρr, respectively. Two
slabs, a distance d from each other, span the system along
the x direction. (b) The three dimensional extension of
this setup depicted in Fig. 1(b), with the two slabs re-
placed by a tube of square cross section. (c) A general-
ized setup in which the slabs (or tube in three dimensions)
of length R ≤ L, do not necessarily span the entire sys-
tem. As evident from the discussion below, this choice
of configurations guarantees that only out of equilibrium
FIF induce a force between the slabs.

Consider first the two dimensional setup of Fig. 1(a) for
a SSEP. For equal reservoir densities, ρl = ρr, the system
is in equilibrium and has short range correlations. The
pressure is uniform throughout the box so that there is no
average force on the slabs. When the reservoir densities
are different, the (average) density profile varies linearly
between the two reservoirs, and there is an average dif-
fusive current of particles along the x direction. Its mag-
nitude is j = D∆ρ/L, where D the diffusion constant of
the particles and ∆ρ ≡ (ρl − ρr). Since the average den-
sity profile is the same on both sides of each slab, naively
one would again expect no force between the two plates.
However, we find that the presence of non-equilibrium
long–range correlations [10, 22] for ρl 6= ρr leads to a
force between the two slabs, given by (for d� L)

F = −kBT
d

(∆ρ)2g(ρl, ρr)

= −kBT
d

(
jL

D

)2

g(ρl, ρr) . (1)

Here kB is the Boltzmann constant, T is the tempera-
ture of the surrounding bath and g(ρl, ρr) is a positive
dimensionless function of order one. Note that the force
is attractive and when expressed in terms of current, or
the average density gradient ∇ρ = ∆ρ/L, proportional

to L2
(
∇ρ
)2

. Here the overline denotes an average over
the steady–state probability distribution. For d � L
the force still decays as 1/d but with a coefficient that
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is smaller by a factor of 2. When the three dimensional
analog of the above setup is considered and a tube with
a square cross section connects the two reservoirs (see
Fig. 1(b)) the force between two parallel slabs has the
same form, with the same function g(ρl, ρr) for d� L.

For slabs or a tube of finite extension, R, and assuming
that fluctuations at the edges of the slabs or tube are neg-
ligible, our results suggest that the force should behave
as

F = −kBT
d

R2

L2
(∆ρ)2g?

(
ρl, ρr,

R

x0

)
= −kBT

d
R2

(
j

D

)2

g?
(
ρl, ρr,

R

x0

)
. (2)

Here g? is a positive function of ρl, ρr and R, while x0

is the distance of the left side of the slabs or tube from
the left reservoir. For hard core particles the force is
attractive and proportional to R2.

Finally, we derive the form of FIF for general diffusive
models to order (∆ρ)2. The result shows that in contrast
to equilibrium systems, out of equilibrium FIF depends
on the specific choice of dynamics. Moreover, the above
scaling forms remain, and while the force is attractive
for SSEP, it can be repulsive in other interacting diffu-
sive systems. We argue that this is the case in boundary
driven antiferromagnetic Ising models with spin conserv-
ing dynamics for a certain regime of parameters.

To derive the above results we use fluctuating hydro-
dynamics [10, 22, 23]. In this approach the dynami-
cal equation of motion for the particle density can be
shown, either through a microscopic derivation (for ex-
ample, see [24]) or through a phenomenological approach,
to be

∂tρ (x, t) + ∂xJ (x, t) = 0 , (3)

with a stochastic current

Jµ (x, t) = −D∂µρ (x, t) +
√
σ (ρ)ηµ (x, t) . (4)

Here, D is a diffusion coefficient and ηµ is an uncorre-
lated white noise vector with components µ = 1, · · · , s,
with s the system dimension. The noise has zero
mean ηµ (x, t) = 0, is uncorrelated ηµ (x, t) ην (x′, t′) =
δµ,νδ (t− t′) δ (x− x′); its variance σ(ρ) = 2DkBTρ

2κ(ρ)
satisfying a fluctuation–dissipation condition, where κ(ρ)
is the compressibility of the gas. For diffusing particles
subject to hard-core exclusion, D is a constant indepen-
dent of the density ρ, and σ(ρ) = 2Dasρ(1 − ρ) [10, 22].
Here a is a UV cutoff given by the lattice size and we
use the standard convention where 0 ≤ ρ ≤ 1 is dimen-
sionless. For simplicity, in what follows derivations are
mostly restricted to two dimensions (Fig. 1(a)); the ex-
tension to three dimensions (Fig. 1(b)) is straightforward
and provided in the Supplemental Material [25].

The density is subject to the boundary conditions
ρ(0, y) = ρl and ρ(L, y) = ρr at the reservoirs, while
the normal component of the current must vanish on the

FIG. 1: The setups studied consist of: (a) A two dimensional
system, infinite in the y direction is connected to two reservoirs
at x = 0 and x = L, with densities ρ(0, y) = ρl and ρ(L, y) =
ρr, respectively. Two slabs, a distance d from each other, span
the system along the x direction. (b) The three dimensional
generalization of the above, with the two slabs replaced by a
tube of square cross section.

two slabs. In steady-state the average density profile is
given by ρ(x, y) = ρl + ∆ρ x/L, with average current
j = (D∆ρ/L)x̂.

It is important to note that the continuum equations
are valid in the hydrodynamic limit of a corresponding
lattice obtained as follows: Consider a (hyper-)cubic sys-
tem of volume Ls divided into Ns boxes of size ξs, where
ξ is a length scale such that Nξ = L. The hydrodynamic
regime corresponds to first letting ξ → ∞ and L → ∞
with L/ξ = N , and then taking the limit N →∞. Eq. 3
is valid when the system is rescaled and length is mea-
sured in units where ξ → 0 and Nξ = L [22].

With this in mind and using ideas similar to Refs. [14,
15, 20, 21] we write the average pressure to leading order
in the fluctuations as:

P (ρ(x)) = lim
ξ→∞

(
P (ρ(x)) +

1

2
P ′′|ρ(x) δρ(x)

2

)
. (5)

Here, δρ(x) = ρ(x) − ρ(x), and primes henceforth indi-
cate derivatives with respect to the density ρ. To cal-
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culate the force between the plates the pressure has to
be evaluated on both sides of each slab. The hydrody-
namic procedure described above implies that calcula-
tions have to be carried out using Eq. 3 with the cut-
off ξ, and then with length scales rescaled at the end of
the calculation so that L is finite. In practice this im-
plies that any divergent UV contributions to the pressure
fluctuations need to be removed from the results of the
calculation. In particular, in equilibrium and using the
continuum result δρ(x)δρ(x′) = asρ(1− ρ)δ(x− x′), one

has δρ(x)2 = asρ(1 − ρ)/ξs, and the fluctuations do not
contribute to the pressure as ξ →∞. Clearly, in the setup
considered, at any location along the wall contributions
from P (ρ(x)) cancel. However, as we now show δρ(x)2

varies on the opposing faces of each slab leading to a fluc-
tuation induced force. (Note that if the plates were tilted,
the density along the two sides of a slab would be different
due to the current. This would lead to a dominant contri-
bution to the force between the two plates from P (ρ(x)).
Since our focus is on FIF we do not consider such cases.)

To evaluate the non–equilibrium fluctuation induced
contribution to pressure, note that for the SSEP the
fluctuation–dissipation relation σ(ρ) = 2DkBTρ

2κ(ρ),

with κ(ρ) = 1
ρ
dρ
dP and σ = 2Dasρ(1− ρ) gives

1

2
P ′′|ρ(x) =

1

2as
kBT

(1− ρ(x))2
. (6)

To compute δρ(x)2 on the faces of the slabs, we evaluate
the fluctuations along the walls in chambers of size L× d
and L × ∞, respectively. The first corresponds to the
chamber between the walls, and the second to the semi-
infinite surrounding spaces.

To evaluate δρ(x, y)2 we use standard methods [26, 27],
expanding the equation of motion to linear order in δρ
about the steady-state profile. The current to linear order
is

Jµ (x, t) = −D∂µδρ (x, t) +
√
σ (ρ(x))ηµ (x, t) . (7)

The dynamical equation is then linear in δρ so that the
correlation function C(x,x′) = δρ(x)δρ(x′) satisfies a
Lyapunov equation [26, 27]. After several straightforward
manipulations this can be brought to the form

(∇xD∇x + ∇x′D∇x′)Cneq(x,x
′)

= −1

2
δ(x− x′)∇2

x′σ(ρ(x′)) , (8)

where Cneq(x,x
′) = C(x,x′)− 1

2Dσ(ρ(x′))δ(x−x′) is the
non-equilibrium part of the correlation function. Using
the average density profile, ρ(x, y) = ρl + ∆ρ x/L, the
above equation reduces to calculating the Green’s func-
tion of a Poisson equation:

(∇2
x +∇2

x′)Cneq(x,x
′) = 2δ(x− x′)(∆ρ)2a2/L2 . (9)

The boundary conditions are such that Cneq = 0 when
either x and x′ are on the reservoirs (since the density on

the reservoirs is fixed, δρ = 0 identically), while on the
slabs its normal derivative is zero (no current). To calcu-
late the force, density fluctuations have to be calculated
on the slabs, e.g. cneq(x) ≡ Cneq({x, y = 0}, {x, y = 0}),
evaluated at the same point x = x′ on one of the slabs.
Using standard Fourier methods one finds

cneq(x) =
∑
n

An sin2
(nπ
L
x
)
, (10)

with

An = −a
2(∆ρ)2

Ld

[(
1

nπ

)2

+
d

nπL
coth

(
nπd

L

)]
. (11)

In the limit d� L, one finds to order L/d

An = −a2(∆ρ)2

[
1

(nπ)L2
+

1

(nπ)2Ld

]
. (12)

Conversely, for d � L (indicated by the superscript 1)
and to leading order in d/L

A1
n = −a2 2(∆ρ)2

Ld

(
1

nπ

)2

. (13)

The Fourier series with An ∝ (nπ)−2 corresponds to a
parabola. For d� L this gives

c1neq(x) = −a2 (∆ρ)2

Ld

x

L

(
1− x

L

)
, (14)

which is in fact the expected behavior of a one-
dimensional SSEP [10, 22]. For d � L, Eq. 12 leads
to a constant contribution, corresponding to the d → ∞
limit, and a contribution similar to c1neq(x) with a coeffi-
cient that is smaller by 2. Using the hydrodynamic proce-
dure described earlier, we observe that δρ({x, y = 0})2 =
cneq(x). Namely, only the long-range part of the correla-
tion function contributes to the pressure.

The fluctuation–induced correction to the pressure in
Eq. 5 is the product of two factors: the first (given in
Eq. 6) is positive, while the second (from Eq. 14) is neg-
ative. This leads to a negative contribution to pressure,
corresponding to attraction between the slabs. In the
limit d � L the contribution from the semi-infinite sur-
rounding spaces is negligible. Integrating the local pres-
sure over the slab leads to a fluctuation-induced force

F =

∫
dx

1

2
P ′′|ρ(x) c

1
neq(x)

= −kBT (∆ρ)2

d

∫ 1

0

dz
z (1− z)

2(1− ρ(z))2
, (15)

consistent with Eq. 1. Here ρ(z) = ρl + ∆ρ z. Evaluating
the integral shows that the total force is a concave func-
tion, vanishing at ρl = ρr. It is straightforward to use the
above results to verify that in the limit d � L the force
decays in the same form with a coefficient that is smaller
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FIG. 2: Numerical results for the fluctuation induced pressure
in two-dimensions, given by the integrand of Eq. 15, multiplied
by Ld. Here ρL = 0.1, ∆ρ = 0.6 and three values of L, d
such that d � L are shown. Units are chosen such that the
lattice spacing is a = 1 and kBT = 1. Solid lines depict
numerical results; the dashed line is the analytic calculation.
The method for measuring the pressure is described in the
Supplemental Material.

by 2. The calculation can be repeated in three dimen-
sions for the configuration depicted in Fig. 1(b) (See [25]
for details). The force is now calculated between two op-
posite slabs, say in the y direction and yields the exact
same result as above.

The negative result in Eq. 14 may appear counterin-

tuitive, since it originates from a computation of δρ(x)
2
.

To validate this conclusion, and the underlying hydrody-
namic procedure, we performed Monte–Carlo simulations
on the SSEP model in two dimensions and measured the
pressure along the slab (see [25] for details). The results
in the limit d/L � 1 and for different lattice sizes are
shown in Fig. 2. The numerics compare well with the
theoretical predictions.

Equation 5 suggests that the pressure, and there-
fore the force, can be either positive or negative, de-
pending on the relative signs of P ′′ and cneq. To ex-
plore this further we carry out a perturbation theory
in ∆ρ for a general model with a density dependent
diffusion constant D(ρ). The equation for the average
density is then ∇ (D(ρ(x)) · ∇ρ(x)) = 0, and the Lya-
punov Eq. 8 now has D as a function of ρ. Setting
ρ(x) = ρl + ρ1(x)∆ρ+ ρ2(x)(∆ρ)2 + · · · , it is straightfor-
ward to show that to order (∆ρ)2 the result in Eq. 14 is
replaced by

c1neq(x) ' kBT (∆ρ)2

2Ld

[( ρ
P ′

)′′
+

(
ρ

P ′
D′

D

)′]
x

L

(
1− x

L

)
,

(16)

resulting in a force

F ' kBT (∆ρ)2

24d
P ′′

[( ρ
P ′

)′′
+

(
ρ

P ′
D′

D

)′]
, (17)

where the derivatives with respect to the density are eval-
uated at ρl. The second term on the right-hand-side
shows the explicit dependence of the results on the dy-
namics through the appearance of the diffusion coeffi-
cient. Moreover, there are no apparent restrictions on
the sign of the force. Consider for example a model with
D = k2(1 − q2(ρ − ρ0)), σ(ρ) = r2(1 + t2(ρ − ρ0)2) and
boundary conditions with ρl = ρ0. While we are not
aware of a direct microscopic realization of this formula, it
can be considered as an approximation for an Ising model
with repulsive interactions evolving under Kawasaki dy-
namics, with ρ denoting, say, the density of down spins.
There, it is known that in one dimension σ(ρ) has a mini-
mum around some ρ0 which depends on the parameters of
the model, with D(ρ) peaked around ρ0 [28, 29]. (On gen-
eral grounds this behavior is expected to persist in higher
dimensions.) Using the above expressions it is straightfor-
ward to check that to order (∆ρ)2 the fluctuation induced

force, F ' kBT (∆ρ)2t2

12d , is repulsive.

The non-extensivity of the force in Eq. 15 is somewhat
surprising, and different from say the critical Casimir
force which behaves as F ∝ kBTL

s−1/ds for generalized
slabs of side L in s dimensions [1]. This is because cneq
scales inversely with the volume of the confining box, re-
sulting in a local pressure that vanishes for a large slab.
As such, we expect this force to be more relevant to small
inclusions as opposed to macroscopic slabs. While the
exact solution of the force between two inclusions is be-
yond the scope of this paper, we can provide an estimate
based on dimensional grounds for the SSEP. To this end,
we consider parallel slabs of dimension R, and neglect
the fluctuations of density at the open sides of the corre-
sponding enclosure. One is then left with evaluating the
pressure fluctuations in a chamber of size R × ds−1 with
boundary densities specified by the mean density at the
edges of the slab. It is then straightforward to see that
in the limit d� L the force is now given by (for SSEP)

F = −2kBT (∆ρ)2

d

R2

L2

∫ 1

0

dz
z (1− z)

(1− ρ(z))2
, (18)

irrespective of dimension s, where ρ(z) = ρl + (∆ρ)(x0 +
Rz)/L as advertised in Eq. 2.

To conclude, we analyzed the force between two parallel
slabs immersed in a diffusive system driven out of equi-
librium. The origin of the FIF in these systems is very
different from the one leading to thermodynamic Casimir
effects [4] and its behavior is distinct from, for example,
equilibrium slab geometries [31, 32]. It will be interesting
to study the behavior of the force in other geometries.
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