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Coordinated motion of cell monolayers during epithelial wound healing and tissue morphogenesis
involves mechanical stress generation. Here we propose a model for the dynamics of epithelial
expansion that couples mechanical deformations in the tissue to contractile activity and polarization
in the cells. A new ingredient of our model is a feedback between local strain, polarization and
contractility that naturally yields a mechanism for viscoelasticity and effective inertia in the cell
monolayer. Using a combination of analytical and numerical techniques, we demonstrate that our
model quantitatively reproduces many experimental findings [Nat. Phys. 8, 628 (2012)], including
the build-up of intercellular stresses, and the existence of traveling mechanical waves guiding the
oscillatory monolayer expansion.
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Many developmental processes, such as embryogene-
sis [1], tissue morphogenesis [2], wound healing [3] and
cancer metastasis [4], involve collective cell migration [5]
and long-scale force generation, which in turn rely on
the interplay of cell-cell cohesion, cell adhesion to the
extracellular matrix, as well as myosin based contractil-
ity [6, 7]. Recent experiments reveal that unconstrained
tissue expansion is accompanied by propagating mechani-
cal waves and build-up of intercellular stresses [8]. These
waves are controlled by expressions of myosin activity,
cell-cell adhesion and cytoskeletal remodeling. These
findings pose a fundamental physical question: how do
waves arise in over-damped active elastic media? What
are the underlying spatio-temporal patterns governing
stress propagation in dense expanding cell layers?

Active materials encompass a wide range of living and
non-living systems with inborn mechanical stresses reg-
ulated by chemical reactions. Generic descriptions of
the dynamics of such materials predict a broad class of
non-equilibrium states including spontaneous flow, wave
propagation and pattern formation [9–12]. While the
dynamics of active fluids have been extensively studied,
quantitative descriptions of active contractile materials
are much less developed. Recent work has suggested that
a polarized elastic medium driven by chemical agents can
exhibit finger-like protrusions and internal stress accu-
mulation during expansion [13, 14]. It remains unclear,
however, how cell contractility, polarization or tissue co-
hesion influence stress generation and wave propagation.
Earlier work by two of us and others showed that the
coupling of mechanical and chemical degrees of freedom
can lead to an effective inertia and sustained propagation
of waves [15–17]. Related models also emphasize that
turnovers in actomyosin activity are essential to capture
spontaneous oscillations in cell cytoskeleton [18, 19]. In
this Letter, we propose a new mechanism of stress prop-
agation in multicellular materials based on a local feed-
back between elastic deformations and cell contractility.

We consider a minimal model for an expanding cell
monolayer, described as an elastic continuum coupled to
an internal degree of freedom, the concentration of active
contractile units. The assumption of elasticity is sup-
ported by experimental evidence that in cohesive cell lay-
ers stress and strain tend to be in phase, as in elastic ma-
terials [7, 8]. The contractile units represent actomyosin
assemblies that locally generate contractile stresses in the
cells. We propose that tissue expansion promotes the
rate of assembly of these contractile units, leading to
larger contractile forces that can compete with propul-
sion forces. This mechano-chemical feedback successfully
captures the experimentally observed stress waves [8].
The steady state of such a system is described by polar-
ization being largest at the edges and lowest at the center.
A scaling model for the expanding cell layer captures the
mechanical oscillations and predicts self-sustained peri-
ods of stiffening and fluidization in the tissue.

Continuum Model for spreading cell layer. We con-
sider a thin film of cell monolayer spreading in the x-y
plane, with height h(t) and length L(t) at time t (Fig. 1A,
inset). In the absence of external forces, in-plane force-
balance gives ∂jΣij+∂zΣiz = 0, where Σ is the stress ten-
sor and the latin indices denote in-plane coordinates x, y.
For h � L, d, the x and y linear extensions of the cell
layer, we average the force-balance equation across the
z-direction to obtain h∂jσij = Σiz|z=0, where σ(x, y) =
1
h

∫ h

0
dzΣ(x, y, z), assuming that the top layer (z = h) is

stress free. The shear stress at the cell-substrate interface
is the traction stress exerted by the cell on the substrate.
It is given by, Σiz|z=0 = Ti = Γ∂tui − f0pi, with Γ the
friction density, u the elastic displacement field, p the cell
polarization and f0 the propulsion force per unit cross-
sectional area. The term f0pi is supported by the ex-
perimental observation that the local velocity of expand-
ing monolayers is generally not aligned with traction, re-
quiring the existence of an internally generated driving
force associated with cell motility [20]. Both Γ and f0
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are controlled by integrin-mediated cell-environment in-
teractions. We further simplify the model by assuming
translational invariance along the y-direction. The equa-
tion of motion governing the displacement field, u(x, t),
of the cell layer is (0 < |x| < L/2),

Γ∂tu = f0p(x, t) + h(t)∂xσ , (1)

where σ(x, t) is the internal stress in the monolayer, σ =
−Π + Bε + σa(c). It is given by the sum of an internal
pressure (Π), an elastic stress, with B the compressional
elastic modulus and ε = ∂xu the strain field, and an
active stress σa that depends on the concentration c of
active contractile units, such as phosphorylated myosins
interacting with actin filaments. The constant pressure
Π accounts for internal growth due to cell proliferation
which is assumed negligible without loss of generality.
The active stress is proportional to the chemical potential
of the active species, µ, which we take proportional to the
logarithm of the concentration of the species. We thus
have σa(c) = β log (c/c0), where c0 is the concentration
of contractile elements in equilibrium (f0 = 0) and β > 0
the magnitude of the contractile stress. The dynamics of
the concentration field c(x, t) is given by,

∂tc = −1

τ
(c− c0) + αε− ∂xJ , (2)

where τ is the timescale of turnover of the contractile
elements, α > 0 is the rate of production of c due
to local extension (or degradation due to contraction)
and J(x, t) is the current responsible for transport of
these active units. This is in contrast to our earlier
works [15, 16], where the strain field enters the dynamics
of c through the decay rate. The total current is a sum
of diffusive and convective fluxes, J = −D∂xc + c∂tu,
where D is an effective diffusion constant, describing the
tendency of neighboring cells to equalize activity lev-
els. Together Eqs. (1) and (2) define the dynamics of
the spreading monolayer, given the form of p(x, t), the
boundary and initial conditions. We first consider the
case of constant but non-uniform propulsion force given
by p(x, t) = tanh (x/λ) where λ is a length scale con-
trolling the width of the transition zone from left moving
to right moving cells at the center of the monolayer (see
Fig. 1A). The length of the spreading layer at time t is
given by, L(t) = L0 + u(L0/2, t) − u(−L0/2, t), and the
height is determined by the condition of volume conserva-
tion, h(t) = h0L0/L(t), with L0 and h0 the initial length
and height of the monolayer, respectively. The boundary
of the monolayer is stress free, i.e., σ(±L/2, t) = 0 at all
times. We assume that the monolayer is initially unde-
formed, u(x, 0) = 0, with an equilibrium concentration
of contractile elements, c(x, 0) = c0, and choose a no-flux
boundary condition for c, ∂xc(±L/2, t) = 0.

Propagating waves. In the absence of propulsion force
(f0 = 0), the cell layer is in a quiescent homogeneous
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FIG. 1. (color online) (A) Top: Schematic of a spreading cell
monolayer. Traction stresses (T) are indicated by arrows and
the colormap denotes local magnitude of monolayer stress.
Bottom: Profile of cell polarization. (B) Time-evolution of the
internal stress σ(x, t) in the monolayer. (C) Time-evolution
of the concentration of contractile units, c, normalized by its
equilibrium value. (D) Midline stress σ(0, t)/σ∞(0, t) (blue
solid), midline strain ε(0, t)/ε∞(0, t) (blue dashed) and mid-
line strain rate ε̇(0, t) (red solid, units 10−4 s−1) as functions
of time. Parameters: B = 120 Pa, β = 200 Pa, Π/β = 10−3,
τ = 350 min, α/c0 = 1/560 min−1, L0 = 600 µm, h0 = 6
µm, f0 = 4 Pa, λ = 30 µm, Γ = 0.009 nN min/µm3, D = 26
µm2/min.

state, with u = 0 and c = c0. When f0 6= 0, the cell
layer spreads and reaches a steady-state at long times.
We have integrated numerically Eqs. (1,2) with the given
initial and boundary conditions, using the Runge-Kutta-
Fehlberg method. The model parameters are chosen to
quantitatively describe the available experimental data
for MDCK colonies [8, 21]. The phase diagram shown
in Fig. 2A displays three dynamical regimes in terms of
contractile activity β and compressional modulus B (con-
trolled by cell-cell adhesion): a region where fluctuations
are stable and diffusive at low contractility, an intermedi-
ate region where the system supports propagating waves,
and a region where the propagating waves become un-
stable at high contractility. There is good agreement
between the boundaries obtained via numerical solution
of the full nonlinear equations (red diamonds) and those
determined by the linear instability of fluctuations about
the equilibrium, undeformed state [21] and about the
long-time solution of the mean-field model in Eqs.(4). In
the region of propagating waves, the stress initially shows
a few local maxima (Fig. 1B), which evolve towards a sin-
gle maximum at the center of the monolayer, as observed
in experiments [8, 22]. The concentration of contractile
elements also oscillates and builds up at the center of the
monolayer (Fig. 1C). The stress waves propagate nearly
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FIG. 2. (color online) (A) Phase diagram of the spreading gel.
The vertical axis represents the contractile activity β and the
horizontal axis is the compressional modulus B. Three behav-
iors are observed: stable diffusive, stable propagating waves,
and oscillatory instability. The red squares are obtained from
the numerical solutions of the full nonlinear model, the black
solid lines are the results of the linear stability analysis (LSA)
of the equilibrium state (at q = 13.5/L0) [21], and the dashed
green lines refer to the LSA of the mean-field model given in
Eqs. (4). Kymographs of (B) the monolayer stress field, (C)
strain rate ∂tε(x, t), and (D) c(x, t)/c0. The parameter values
are taken to be the same as in Fig. 1.

in phase with the strain field, whereas the strain rate
fluctuates nearly out of phase with the stress (Fig. 1D).
Thus the response of the material is dominated by elas-
tic relaxation with dissipation induced by turnovers in
contractility on a timescale τ . The waves span the en-
tire length of the monolayer and consist of a strain rate
wavefront that propagates inwards from the edge, and
then travels back to the edge, resembling an X-pattern,
as observed experimentally [8]. With the given parameter
values our numerical simulations capture the mechanical
waves as evident in the kymographs of stress, strain rate
and concentration of contractile units (Fig. 2B-D).

To understand the origin of wave propagation and esti-
mate the wave frequency, it is useful to examine the linear
fluctuations in the strain field, δε and the concentration
field δc, about the quiescent homogeneous state, u = 0,
c = c0 and no spreading force. Using Eqs. (1) and (2),
one can then eliminate δc from such linearized equations
to obtain the linearized dynamics of strain fluctuations,

τΓ∂2
t δε+Γ∂tδε = h0

(
Beff + ηeff∂t − τBD∂2

x

)
∂2
xδε , (3)

The above equation shows that the coupling of strain to
concentration field yields an effective mass density (in-
ertia), τΓ, and viscoelasticity characterized by an effec-
tive elastic modulus, Beff = B + αβτ/c0, and an effec-
tive viscosity ηeff = (B − β + DΓ/h0)τ . The dynamics
of strain fluctuations resembles a damped Kelvin-Voigt
oscillator with a characteristic frequency of oscillations,
ω0 = q

√
h0 (Beff + τq2BD) /(τΓ), with q the wavevec-

tor. The estimate for the time period 2π/ω0 agrees

well with the time period determined from numerics for
q ' 4π/L0 (see Fig. 3A) and with the value measured
in recent experiments [8]. Finally, we note that if the
concentration c is conserved (τ → ∞; α = 0), sta-
ble propagating waves are spontaneously generated for
0 < B − β + DΓ/h0 < 2

√
DBΓ/h0. If diffusion is

slow compared to elastic relaxation, DΓ/Bh0 � 1, stable
propagating waves are not observed [21]. In the opposite
limit of infinitely fast turnovers in contractility (τ → 0),
strain fluctuations decay diffusively at a rate' Bh0/ΓL

2.
Mean field model. The mean field limit of the contin-

uum model is obtained by neglecting spatial variations in
c and ε and it is formulated in terms of the length (L),
height (h), and the average concentration of contractile

elements, c(t) = 1
L

∫ L

0
dx c(x, t), with

γ
dL

dt
= F0 −A(t)σ(t) , (4a)

dc

dt
+
c

L

dL

dt
= −1

τ
(c− c0) + αε , (4b)

with F0 the propulsion force, γ the friction, A(t) = dh(t)
the cross-sectional area, ε(t) = L(t)/L0 − 1 the strain
and σ(t) the internal stress given by σ(t) = Bε(t) +
β(c(t)/c0−1). The height is determined using the incom-
pressibility condition, with the size in the y direction, d,
fixed. The steady state solution is L∞ = L0/(1 − Λ),
h∞ = h0(1 − Λ) and c∞ = c0 + ατΛ/(1 − Λ), with
Λ = c0F0/dh0(Bc0 + αβτ) the net compressive strain
in the z-direction. For a given value of elastic modu-
lus B, the mean-field model predicts oscillatory solutions
for β > βc, where βc(B) defines the phase boundary in
(B, β) plane separating the regions of propagating waves
and diffusive spreading (dashed line in Fig. 2A). For
β < βc the monolayer diffusively approaches the steady
state (c∞, L∞). This simple mean-field approach allows
us to study the material response of the monolayer char-
acterized by an effective elastic modulus, BMF = dσ/dε.
The oscillatory regime (β > βc) exhibits sustained oscil-
lations in the material rigidity, BMF, with a slow period
of stiffening followed by a sharp turnover (see Fig. 3B).
For β < βc, the material gradually stiffens with BMF

asymptotically approaching the value Beff. These oscil-
lations reflect self-sustained turnovers in the cytoskeleton
with periodic reinforcement and fluidization on different
timescales, which was invoked to be the underlying mech-
anism of wave propagation in Ref. [8].

Time-dependent propulsion forces. Finally, we con-
sider time variations of the propulsion force, as arising
from the dynamics of cell polarization p(x, t) given by

∂tp = (a− bp2)p+ κ∂2
xp− w∂xε+ w′∂x(c/c0) , (5)

where the first two terms with b > 0 allow for the onset
of a homogeneous polarized state when a > 0. The stiff-
ness constant κ characterizes the cost of local deforma-
tions in the polarization. The last two terms in Eq. (5)
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FIG. 3. (color online) (A) Period of oscillation determined
from the numerical solution to Eqs. (1,2) (red squares), ob-
tained from Eq. (3) (black solid circles), and as predicted by
the mean-field model (green open circles) for various β and B.
(B) Mean-filed elastic modulus BMF of the cell monolayer as
a function of time, showing oscillatory stiffening/fluidization
for β = 100 Pa (solid) and steady stiffening for β = 30 Pa
(dashed). Parameters: B = 60 Pa, τ = 350 min, c0/α = 780
min, F0 = 8 nN, γ = 9 nN min/µm, dh0/L

2
0 = 0.1.

define active couplings of p to the strain and the con-
centration field, with w,w′ > 0, such that p aligns with
the gradient of monolayer density and the concentration
field. In other words, cell polarization is enhanced in
the direction opposite to that of elastic restoring forces.
Additionally, polarization gradients can induce mechan-
ical stresses, and the stress tensor is modified to read,
σ = Bε+σa(c)+β′∂xp, where β′ > 0 is a contractile ten-
sion induced by polarization gradients. We assume a no-
flux boundary condition, p′(±L/2) = 0. For w = w′ = 0
and if t � a−1, such that L �

√
κ/a, the solution is

essentially time-independent, and can be approximated
as, p∞(x) '

√
(a/b) tanh (x/λ), with λ =

√
κ/a.

When the coupling of polarization to strain and con-
tractility is turned on, various spatiotemporal patterns
emerge as the active tension β′ is varied. For small β′, the
stress patterns are qualitatively similar to Fig. 2B (with
time-independent propulsion), and p asymptotically ap-
proaches p∞ with initial oscillations near the midline
(Fig. 4 A,D). For intermediate β′, a traveling stress pulse
emerges in the layer and the location of stress maxima
oscillate around the midline (Fig. 4B). This is accompa-
nied by large amplitude oscillations of net polarity that
attenuate in time to generate a symmetric steady state
polarization profile (Fig. 4E). These traveling pulses per-
sist even in the case β = 0. For even higher values of
β′ complex oscillatory patterns emerge in the monolayer
stress and polarization (Fig. 4C,F).

Discussions. We have developed a simple yet rich dy-
namic model for an active spreading gel, based on a lin-
ear feedback between local strain and contractility. A
local increase in length due to spreading promotes the
assembly of active elements that in turn induce contrac-
tion. We propose that a finite turnover rate in the ac-
tive contractile elements can yield an effective inertia and

FIG. 4. (color online) Spatio-temporal evolution of internal
stress (A-C) and polarization (D-F) as the polarization in-
duced tension β′ is increased (left to right). (A,D) X-waves,
β′ = 12 nN/µm; (B,E) traveling stress pulse, β′ = 17 nN/µm;
(C,F) complex oscillatory patterns, β′ = 24 nN/µm. Parame-
ters: w = 4.3 µm/min, w′ = 0.21 µm/min, κ = 193 µm2/min,
a = 0.07 min−1, b = 0.03 min−1. Other parameter values are
the same as in Fig. 1. See Supplemental Material [21] for
kymographs of strain rate, velocity and the traction stress.

viscoelasticity in the gel that vanishes for infinitely fast
turnover rates. This simple mechano-chemical model al-
lows us to capture the experimentally observed propa-
gating stress waves during tissue expansion without in-
voking nonlinear elasticity [8]. These stress waves are
characterized by strain rate wavefronts that initiate from
the leading edge and periodically travel into and away
from the midline of the monolayer. Our findings also
elucidate that the effective material rigidity of the tissue
undergoes sustained periods of stiffening and softening
as the waves propagate. We emphasize that spreading
is not crucial for wave propagation and that oscillations
can also occur under confinement. However in contrast
to our model, Ref. [23] recently proposed that oscilla-
tory modes in confined layers can also be generated by
stochastic motion of cells. Experimental tests that in-
hibit myosin based contractility or cell directionality can
help discriminate between these different models.
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