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We present an approach for entangling electron spin qubits localized on spatially separated im-
purity atoms or quantum dots via a multi-electron, two-level quantum dot. The effective exchange
interaction mediated by the dot can be understood as the simplest manifestation of Ruderman-
Kittel-Kasuya-Yosida exchange, and can be manipulated through gate voltage control of level split-
tings and tunneling amplitudes within the system. This provides both a high degree of tuneability
and a means for realizing high-fidelity two-qubit gates between spatially separated spins, yield-
ing an experimentally accessible method of coupling donor electron spins in silicon via a hybrid
impurity-dot system.

Single spins in solid-state systems represent versatile
candidates for scalable quantum bits (qubits) in quantum
information processing architectures [1–6]. In many pro-
posals involving single-spin qubits localized on impurity
atoms [2, 7] and within quantum dots [1, 8], two-qubit
coupling schemes harness the advantages of tunneling-
based nearest-neighbor exchange interactions: exchange
gates are rapid, tunable, and protected against multiple
types of noise [9–13]. These features have been demon-
strated for electron spins in quantum dots [14–17], while
a similar demonstration for spins localized on impurity
atoms such as phosphorus donors in silicon remains an
outstanding experimental challenge [6, 18].

Although the exchange interaction originates from the
long-range Coulomb interaction, directly coupling two
spins via exchange typically has a strength that decays
exponentially with distance [8, 19]. Many approaches
to implementing long-range interactions therefore involve
identifying a system that acts as a mediator of the inter-
action between the qubits, with proposed systems includ-
ing optical cavities and microwave stripline resonators
[20–25], floating metallic [26] and ferromagnetic [27] cou-
plers, the collective modes of spin chains [28–30], super-
conducting systems [31, 32], and multi-electron molec-
ular cores [33]. Recently, long-range coupling of elec-
trons located in the two outer quantum dots of a lin-
ear triple dot system has been demonstrated [34, 35].
The effective exchange interaction in that system arises
from electron cotunneling between the outer dots and
exhibits the fourth-order dependence on tunneling am-
plitudes that is characteristic of superexchange [36], but
suffers from a large virtual energy cost from the doubly
occupied center dot states. In contrast, a many-electron
quantum dot in the center can also couple distant spins
via the Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action, with low-energy intermediate states [37, 38], but
perhaps at the cost of low fidelity as impurity-Fermi sea
correlations become hard to disentangle [39, 40].

Here, we show that a multi-level quantum dot contain-
ing two electrons can mediate a high-fidelity exchange in-
teraction between two spatially separated single-electron
spin qubits. We assume in what follows that the qubit
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Figure 1: (a) Charge stability diagram for the combined
impurity-dot three-site model (U ≡ U1, εm ≡ ε1), with the
operating point indicated. (b) Schematic diagram showing
the orbitals of a pair of single-level impurity atoms coupled
via a two-level quantum dot. The electron occupation illus-
trates the initial configuration (1, 2, 1). Arrows depict the
tunneling amplitudes defined in Eq. (2). Reversing the direc-
tion of an arrow corresponds to taking the complex conjugate
of the associated tunneling amplitude. (c) Energy level dia-
gram illustrating the two-spin states of the mediator dot used
in our calculation.

electrons are localized on single-level impurity atoms,
but our analysis also maps directly to the case of a
triple quantum dot system [34, 35] with the same level
structure and electron occupation. Our approach sug-
gests an experimentally accessible method for achieving
tunable coupling between donor electron spins in silicon
[18, 41, 42].
Hubbard model description: The minimal model for our

approach comprises a two-level quantum dot coupled to
two impurities which are chosen to be near their ioniza-
tion point by appropriate choice of gate voltages. This
reduces to a multi-orbital Hubbard model for a linear
three-site system in the four-electron regime [43, 44]. We
assume gate voltages can be applied to the system such
that the total electron number can be set to be four,
while the charge stability diagram prefers the initial con-
figuration of (1, 2, 1). Here, (nL, nM , nR) represents the
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configuration with nL (nR) electrons in impurity orbital
L (R) and nM electrons in the mediator dot (Fig. 1).
We work at a point in the charge stability diagram where
transitions to charge configurations (0, 3, 1) and (1, 3, 0)
are the closest available charge states, with detunings
∆L,∆R [Fig. 1(a)].

We can write the Hamiltonian as Hhub = Hn + Ht,
where

Hn =
∑
i

εini +
Ui
2
ni(ni − 1) +

∑
i 6=j

Kij

2
ninj

+J12

∑
σ,σ′

c†1,σc
†
2,σ′c1,σ′c2,σ, (1)

Ht = −
∑
i=1,2

∑
σ

(
tLic

†
i,σcL,σ + tRic

†
i,σcR,σ + h.c.

)
(2)

with i, j = L,R, 1, 2 denoting the impurity and dot or-
bitals shown in Fig. 1(b). Hn is diagonal with respect
to the charge occupation defined by the set of eigenval-
ues of the electron number operators ni =

∑
σ ni,σ =∑

σ c
†
i,σci,σ, where c

†
i,σ creates an electron in orbital i

with spin σ. The quantity εi denotes the on-site energy
of orbital i. Ui and Kij are the Coulomb repulsion ener-
gies for two electrons in the same orbital i and in different
orbitals i and j, respectively, and J12 is the exchange en-
ergy for electrons in orbitals 1 and 2 of the dot with spins
σ, σ′ =↑, ↓ . The tunneling term Ht couples subspaces
of fixed charge occupation and is expressed in terms of
the complex tunneling amplitudes tLi,Ri between orbitals
L,R and orbital i of the dot [Fig. 1(b)].

In the present work, we are interested in a system
where we can effectively turn on and off the induced ex-
change, either by gate voltage (varying the energy differ-
ence between different charge sectors) or by tuning tun-
neling. We consider our low-energy manifold to be the
(1, 2, 1) charge configuration with the center dot spins in
the lowest-energy singlet. This set of states is gapped
(as noted below) from other configurations by an energy
large compared to typical dilution refrigerator tempera-
tures and provides the starting point for our perturbation
theory.

Since we assume at most single occupancy of or-
bitals L, R, and 2 and a linear geometry for the three
sites, we implicitly have set UL, UR → ∞ and have ne-
glected U2 and KLR in Eq. (1). For simplicity, we
assume symmetric impurity-dot Coulomb repulsion en-
ergies [45] and set KLi = KRi ≡ Ki for i = 1, 2,
while we take exchange terms JRi = JLi = 0, ap-
propriate for weak tunneling. Since Ht couples only
states with the same total spin Stot and total z com-
ponent Sz, we can independently consider the two sub-
spaces (Stot = 0, Sz = 0) and (Stot = 1, Sz = 0) . Neglect-
ing higher-energy states, the intermediate charge config-
urations generated by Ht within each spin subspace are
(0, 3, 1) , (1, 3, 0) , and (1, 2∗, 1) , where nM = 2∗ denotes
an excited two-electron state of the dot with one electron

in each orbital (see Fig. 2). Choosing as the energy origin
E0 = εL+ εR+2ε1 +U1 +4K1, which is the energy of the
(1, 2, 1) states in the absence of tunneling, we find that
the zeroth-order energies of the (0, 3, 1) [(1, 3, 0)] states
are

∆L(R) = ε2 − εL(R) +W , (3)

where W ≡ −2K1 + K2 + 2K12 − J12. The energies of
the (1, 2∗, 1) states depend on the two-spin state of the
center dot electrons: for the triplet and singlet states, the
energies [Fig. 1(c)] are, respectively,

∆M = ε2 − ε1 +W − U1 +K2 −K12 , (4)
∆J = ∆M + 2J12 . (5)

Typical values for the energies ∆L,∆R,∆M ,∆J in prac-
tice range from ∼ 20-500 µeV, while the tunneling am-
plitudes tLi,Ri in Eq. (2) are ∼ 1-10 µeV. Thus, Ht can
be regarded as a perturbation to Hn.

Within our toy model, the effective exchange cou-
pling is given by the energy splitting between the states
|(1, 2, 1) ;SLR, S11〉 and

∣∣∣(1, 2, 1) ;T
(0)
LR, S11

〉
in the pres-

ence of the tunneling term Ht. Here, |Sij〉 and
∣∣∣T (m)
ij

〉
represent two-electron singlet and triplet spin states of
the electrons in orbitals i, j and m = 0,± indicates
the spin magnetic quantum number of the triplet state.
Details of the fourth-order perturbation theory analysis
used to determine the energy shifts are given in Ref. [46].
We find that the first-order and third-order corrections to
the energy vanish, while the second-order shifts are iden-
tical for both states. The fourth-order shifts δE(4)

S and
δE

(4)
T are therefore the lowest-order corrections that give

rise to an energy splitting. The difference δE(4)
T − δE

(4)
S

is the Heisenberg exchange coupling J, which we find to
be given by

J = −2

(
t∗R2tR1t

∗
L1tL2

∆R∆M∆L
+ c.c.

)
. (6)

This is the central result of our paper: using an initial sin-
glet configuration yields an RKKY-like interaction [47],
including both small-energy intermediate states (∆M be-
ing ‘small’ compared to the dot charging energy) and
non-trivial interference terms (J depends on the phases
of the tunneling terms in the presence of the magnetic
fields typically present in experiments).

Examining Eq. (6), we first remark that ∆J , which
differs from ∆M by the intradot exchange splitting 2J12,
does not appear in this expression. From the dependence
of Eq. (6) on ∆L, ∆R, and ∆M , we see that J is inversely
proportional to the energy detunings ε2− εL and ε2− εR
between orbital 2 of the quantum dot and the impurity
orbitals as well as to the on-site energy difference ε2− ε1
between the two levels of the quantum dot. As the detun-
ings can be controlled via the voltages applied to the dot
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Figure 2: Schematic illustration of virtual tunneling processes
which give rise to the effective exchange interaction in Eq. (6).
The red (blue) arrows correspond to the process in which the
electron in orbital L (R) tunnels to the center dot in the
first step. Each step is labeled with the tunnel coupling for
the associated hopping term in Ht [Eq. (2)], and the zeroth-
order energies of the charge configurations [Eqs. (3)-(5)] are
indicated.

and have a lower limit set only by the tunnel coupling
and magnetic field magnitudes, the strength of the ex-
change coupling mediated by the two-level dot is highly
tunable. In contrast to cotunneling [34, 35], this tuneabil-
ity is not limited by the fixed charging energy associated
with virtual double occupation of the center dot. Tuning
the gate voltages applied to the impurities in order to
shift the impurity orbital levels away from their ioniza-
tion point effectively suppresses tunneling between the
impurities and the dot, enabling the exchange coupling
to be switched off. Alternatively, the coupling may be
turned off by initially transferring the qubit states from
the electron spins to the nuclear spins of the donors [2, 48]
and subsequently ionizing the donors via the applied gate
voltages.

We now turn to the phase dependence in Eq. (6). The
terms correspond to two alternative pathways for the
electrons which give rise to the effective coupling J [Fig.
2]; thus, the interaction can have interference between
these pathways, and their non-trivial relative phase for
finite magnetic fields leads to an interaction strength that
depends on the tunneling phase factors [47]. This pro-
vides a glimpse of the beginning of the expected sign fluc-
tuations in exchange for a true RKKY interaction, where
the finite Fermi wave vector kF of the two-electron Fermi
‘sea’ matters. For phosphorus donor electrons in silicon,
the tunneling amplitudes also oscillate rapidly with the
donor positions due to interference between electronic
states associated with different degenerate minima, or

valleys, existing in the conduction band [49, 50]. In
the context of our approach, this can be seen by tak-
ing tij ∝ 〈ψi |ψj〉 for i = L,R and j = 1, 2, where ψi,j
are superpositions of orbital wave functions associated
with each valley. The oscillatory tunneling amplitudes
lead to a spatial dependence of the terms in Eq. (6) that
requires control of the dot center relative to the donor po-
sitions with precision on the scale of the lattice constant
in order to achieve a particular coupling strength [51].
We note, however, that the simplified model we use here
does not take into account interfacial disorder present in
realistic silicon quantum dot devices, which mixes val-
ley eigenstates having different phases [52–54] and may
thus suppress valley interference effects for dot-mediated
donor coupling.
Charge noise and exchange gate fidelity : Fluctuating

electric fields introduce variations in the parameters de-
termining the effective exchange J in Eq. (6) and con-
sequently affect the operation of exchange-based gates
[1, 55–57]. Here, we consider the effects of classical charge
noise on the detuning parameters ∆α for α = L,M,R
and calculate the fidelity of the exchange gate Û (τ) =
exp (−iHexchτ) , where Hexch = −J |SLR, S11〉 〈SLR, S11|
and |SLR, S11〉 is the corrected state after elimination of
states outside the (1, 2, 1) subspace (note that we sup-
press the charge state in this notation, since the effective
Hamiltonian acts only in this subspace). Letting ∆α →
∆α + δα, where δα represents small fluctuations about
the average detuning ∆α, and expanding to first order
in δα gives J → J ′ = J (1−

∑
α δα/∆α). We assume

that the fluctuations δα are independent and described by
Gaussian distributions ρα (δα) = e−δ

2
α/2σ

2
α/
√

2πσα with
charge noise standard deviations σα [57]. The exchange
gate in the presence of these fluctuations is then given by
Û ′ (τ) = 1 +

(
eiJ
′τ − 1

)
|SLR, S11〉 〈SLR, S11| .

We define the minimum gate fidelity as Fmin (τ) =

e−τ
2/T∗22

〈∣∣∣〈ψ0|Û†0 (τ) Û ′ (τ) |ψ0〉
∣∣∣2〉 [58], where Û0 (τ) =

1 +
(
eiJτ − 1

)
|SLR, S11〉 〈SLR, S11| is the ideal gate,

|ψ0〉 =
(∣∣∣T (0)

LR, S11

〉
+ |SLR, S11〉

)
/
√

2 = |↑L↓R, S11〉 is
a state for which the exchange gate error is maximized,
and the average is taken over the charge noise distri-
butions. The envelope e−τ

2/T∗22 accounts for additional
decay characterized by a time T ∗2 over the gate dura-
tion τ [59, 60]. Evaluation of Fmin involves the terms〈
e±iJ

′τ
〉

= e−(J2τ2/2)
∑
α σ

2
α/∆

2
αe±iJτ . Note that the am-

plitude of
〈
e±iJ

′τ
〉
describes Gaussian decay of the form

e−τ
2/T 2

d with a decay time Td = (1/J)
√

2/
∑
α σ

2
α/∆

2
α

[57]. Using the expressions for
〈
e±iJ

′τ
〉
, we find

Fmin (τ) =
e−τ

2/T∗22

2

(
1 + e

− 1
2J

2τ2 ∑
α

σ2
α

∆2
α

)
. (7)
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We plot this fidelity for the square-root-of-swap entan-
gling gate U

1/2
sw ≡ Û (π/2J) [1] as a function of the

effective quantum dot level splitting ∆M and symmet-
ric effective impurity-dot detunings ∆L = ∆R ≡ ∆I in
Fig. 3. For ∆M = 90 µeV, ∆I = 60 µeV, and a tun-
nel coupling |tLi| = |tRi| = t = 2 µeV, which is rele-
vant for phosphorus donors in silicon [41, 42, 61], we find
J = 4t4/∆R∆M∆L = 0.2 neV. This exchange coupling
strength corresponds to a gate time τgate = π/2J ≈ 5 µs
and gate fidelity Fmin ≈ 0.998. Thus, setting the quan-
tum dot level splitting and impurity-dot detunings to
values within an optimal range in principle enables high-
fidelity exchange gates. By contrast, the optimization
of fidelity for gates implemented via indirect exchange
between the electron spins of a triple quantum dot in
the (1, 1, 1) regime is more challenging [62]. We also note
that a maximum fidelity of 0.99 was obtained for U1/2

sw im-
plemented using an indirect exchange coupling strength
& 10 µeV in the effective (1, 1, 1) regime of the molec-
ular system considered in Ref. [33]. We therefore find
that, for the approach we describe, a smaller effective
exchange coupling strength does not fundamentally limit
the exchange gate fidelity.

Finally, studies of exchange in multi-electron quantum
dots [63–65] suggest that exchange coupling of the type
discussed in the present work, which is derived from tun-
neling via an excited orbital of a multi-level quantum dot
with lower-energy orbitals filled by electron pairs, may
exhibit increased robustness against fluctuations caused
by charge noise due to screening of the Coulomb interac-
tion by the paired “core” electrons already present in the
dot. Varying the number of electrons in the dot changes
the spacing between the outermost levels [3] and conse-
quently ∆M , so that J may be tuned in discrete steps.
Provided this discrete level description remains valid (i.e.,
for dot orbital splittings large compared to the ther-
mal energy kBT ), the larger sizes associated with multi-
electron dots may also enable longer-range coupling.
Effects of inhomogeneous g factors: While extensions

of our model to large parallel magnetic field cause no
changes for homogeneous g factors, a difference in the g
factors of the impurities and the quantum dot [67] couples
the Stot = 0 and Stot = 1 subspaces. To investigate the
form of this coupling, we assume an applied magnetic
field B = Bz ẑ and add a magnetic gradient term of the
form

HZ =
Ωz
2

∑
i=1,2

(ni,↑ − ni,↓) (8)

to the Hubbard Hamiltonian [Eqs. (1) and (2)],
where Ωz ≡ ∆gzµBBz is the magnetic field splitting
due to a g-factor gradient ∆gz parallel to the exter-
nal field [see Fig. 1(c)]. We transform to a basis
which diagonalizes H0 ≡ Hn + HZ and treat Ht as
a perturbation to H0. Keeping terms up to second
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Figure 3: Minimum fidelity [Eq. (7)] of the square-root-
of-swap exchange gate U1/2

sw ≡ Û (π/2J) as a function of the
quantum dot level splitting ∆M and impurity-dot detunings
∆L = ∆R ≡ ∆I for σL = σR = σM = 2 µeV, T ∗

2 = 1 ms
[60, 66], and |tLi| = |tRi| = t = 2 µeV [61].

order in the tunneling amplitudes and up to linear
order in Ωz, we find that the correction to the effec-
tive exchange Hamiltonian Hexch is given by Hg =

fg

(∣∣∣T (0)
LR, S11

〉
〈SLR, S11|+ |SLR, S11〉

〈
T

(0)
LR, S11

∣∣∣) ,
where

fg =
Ωz
2

(
|tL2|2

∆2
L

− |tR2|2

∆2
R

)
. (9)

From this expression, we see that the effects of the g fac-
tor inhomogeneity described by Eq. (8) can be eliminated
up to first order in Ωz and second order in the tunnel-
ing amplitudes by choosing tL2, tR2, ∆L and ∆R such
that the constraint ∆2

L/∆
2
R = |tL2|2 / |tR2|2 is satisfied.

Note that the preceding analysis assumes Ωz < ∆M,L,R,
which sets an upper bound on J [see Eq. (6)]. For impu-
rity atoms with nonzero nuclear spin, hyperfine coupling
represents an additional source of magnetic gradients be-
tween the impurity and dot electrons that may prove
useful for alternative coupling schemes. Indeed, for di-
rect exchange coupling between two donor electron spins
in silicon, recent work [68] shows that a difference in the
hyperfine coupling between the donors enables two dis-
tinct methods for realizing high-fidelity two-qubit gates.

The validity of the model considered in the present
work is limited by the validity of the two-level approxi-
mation for the mediator quantum dot in the presence of
the Coulomb interaction among the four electrons. Fu-
ture work should consider a detailed calculation of the
effective exchange interaction mediated by the two-level
quantum dot in terms of the general form of the pairwise
Coulomb interaction and explore how this analysis may
be extended to gain insight into the form of the coupling
mediated by a quantum dot with more than two levels.
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