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We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium under
a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects
at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field
and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the
Coulomb gauge. The linear response regime, limited by Joule heating, breaks down at fields much

smaller than the quasi-particle energy scale.

For large electronic interactions, strong but experi-

mentally accessible electric fields can induce a resistive switching by driving the strongly correlated
metal into a Mott insulator. We predict a non-monotonic upper switching field due to an interplay
of particle renormalization and the field-driven temperature. Hysteretic I-V curves suggest that the
non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.

PACS numbers: 71.27.4a, 71.30.+h, 72.20.Ht

Understanding of solids driven out of equilibrium by
external fields [1, 2] has been one of the central goals
in condensed matter physics for the past century and is
very relevant to nanotechnology applications such as re-
sistive transitions. Multiple studies of this phenomenon
have been performed in semiconductors and oxides [3—
10]. In oxides, the application of an electric field can lead
to a dramatic drop of resistivity up to 5 orders of mag-
nitude. The relatively accessible threshold fields Ey ~
10476 V/m and the hysteretic I-V curves make them
good candidates for the fabrication of novel electronic
memories. A Landau-Zener type of mechanism [11] seems
unlikely as it predicts a threshold field on the order
of 1037 V/m. In narrow gap chalcogenide Mott in-
sulators, an avalanche breakdown was suggested with
Ein Ega% [3]. Yet, the resistive switchings in other
classes of correlated materials do not seem to involve
solely electronic mechanisms. In organic charge-transfer
complexes, it is believed to occur via the electro-chemical
migration of ions [4, 5]. Finally, there are strong indica-
tions that a Joule heating mechanism occurs in some bi-
nary oxides such as NiO [7] and VOg [8-10]: the electric-
field-driven current locally heats up the sample which
experiences a temperature-driven resistive switching.

These experiments raise basic questions of how a
strongly correlated state continuously evolves out of equi-
librium under an external field, and how we describe the
non-equilibrium steady states that consequently emerge.
We develope a much needed basic microscopic theory of
the driven metal-insulator transition.

Building on earlier theoretical efforts [11-27] we iden-
tify in a canonical model of strongly interacting elec-
trons a region where electric-field-driven resistive switch-
ing takes place. We demonstrate how Joule heating ef-
fects modify the linear response regime and how, away
from the linear regime, the same Joule physics leads to
the hysteretic resistive transitions of the strongly corre-

lated system. The derived energy scales for resistive tran-
sitions are orders of magnitude smaller than bare model
parameters, within the feasible experimental range.

We study the Hubbard model in a constant and homo-
geneous electric field E which induces electric current J.
After a transient regime, a non-equilibrium steady state
establishes if the power injected in the system, J-E, is bal-
anced by coupling the system to a thermostat which can
absorb the excess of energy via heat transfer [14, 15, 21—
24]. The thermostat is modeled by identical fermion
reservoirs attached to each tight-binding (TB) sites. In
the Coulomb gauge, the electric field amounts in an elec-
trostatic potential —¢FE imposed on the ¢-th TB site
(¢ = —o0,- -+ ,00) and on its associated fermion bath [15].
The model is fully consistent with gauge-covariant mod-
els [23]. The non-interacting Hamiltonian reads,
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where dzg are the tight-binding electron creation opera-

tors at the /-th site with spin ¢ =1 or |, and c;[aa are
the corresponding reservoir electron operators attached.
« is a continuum index corresponding to the reservoir
dispersion relation €, defined with respect to the electro-
static potential —¢F. ¢ is the overlap between the TB
chain and the reservoirs of length V' which will be sent
to infinity, assuming furthermore that the reservoirs re-
main in equilibrium at bath temperature 7i,. Later we
will extend this chain into higer dimensional lattice. The
electric field does not act within each reservoirs whose
role is to extract energy but not electric charge from the
system [15]. We use a flat density of states (infinite band-
width) for the reservoir spectra ¢,,, and define the damp-
ing parameter as I' = V"l1g? > d(eq). We work with



h =e = kg = a =1 in which e is the electronic charge
and a is the lattice constant. In the rest of this Letter,
we measure energies in units of the full TB bandwidth
W =4y =1 (1-d) and W = 12y = 1 (3-d). The exact
solution of the non-interacting model in Eq. (1) has been
shown [14, 15] to reproduce the conventional Boltzmann
transport theory despite the lack of momentum transfer
scattering. The Hubbard model H = Hy + H; is defined
with the on-site Coulomb interaction parameter U as
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Our calculations are in the particle-hole symmetric limit.

We use the dynamical mean-field theory (DMFT [16,
28]) to treat the many-body interaction wvia a self-
consistent local approximation of the self-energies. Note
that the self-energy has contributions from both the
many-body interaction H, and the coupling to the reser-
voirs: X (w) = —iI'+X7(w) and B, (w) = 2il fpp (w)+
Y5 (w) with the Fermi-Dirac (FD) distribution frp(w) =
[1 + exp(w/T})] ™. Once the local retarded and lesser
self-energies are computed, one can access the full re-
tarded and lesser Green’s functions (GFs). Note that in
a homogeneous non-equilibrium steady state, all the TB
sites are equivalent. In the Coulomb gauge, this leads
to Gy (w) = G;fk,furk(w + kFE) and similarly for the
self-energies [15, 25], as can be derived via a gauge trans-
formation from the temporal gauge.

Below, we present the implementation of our DMFT
scheme in the Coulomb gauge directly in the steady
states. It consists in singling out one TB site — say
¢ = 0 — (often referred as impurity) and replacing its
direct environment (i.e. semi-infinite dissipative Hub-
bard chains and its own reservoir) with a self-consistently
determined non-interacting environment (often referred
as Weiss “fields”). The local electronic problem is then
treated by means of an impurity solver.

For given self-energy [X)< (w) = X~ (w+£F)], the on-
site Green’s functions obey the following Dyson equations

GT(W)_l = w— Y (w) — 'yQFt”;t(w), (3)
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in which 72F;; are the total hybridization functions

to the left and right semi-infinite chains, Fo<(w) =

FUS(w+ E)+ F'S(w — E). Fi(w) is the on-site re-

tarded GF at the end of the RHS-chain (¢ = 1) which
obeys the self-similar Dyson equation

Fiw) ™ =w=Yw) -7"Fllw+E), (5

which can be solved recursively after more than 500 iter-
ations. F_(w) corresponds to the GF of the LHS-chain
and can be obtained similarly. The non-interacting parts
of the impurity GFs, G, are constructed using

gr(w)_l = W"‘ir_'YQFtTot(W) (6)
G (w) = |G"(W)P[2iT fep(w) + 7 Fige(@)]. (7)
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FIG. 1: (color online) Electric current (per spin) J vs. elec-
tric field E. (a) 1-d chain with damping I' = 0.0625W and
fermion bath temperature 7, = 0.00125W with the 1-d TB
bandwidth W = 4~. The linear conductance in the small field
limit (magnified in the inset) is the same for non-interacting
(U = 0) and interacting (U = 1.5W) models. After the con-
ductivity deviates from the linear response behavior, inelastic
contributions appear at £ = U/2 and E = U. (b) 3-d lat-
tice with I' = 0.0083W and T, = 0.00042W with the 3-d TB
bandwidth W = 12v. The main features remain similar to
the 1-d case. All following energies are in unit of W, unless
otherwise mentioned.

The local self-energies are obtained by means of
the iterative-perturbation theory (IPT) up to the
second-order in the Coulomb parameter U: Zg(t) =
U?[GZ(t)]?GS(t). The GFs are updated with this self-
energy using the above Dyson’s equations and the proce-
dure is repeated until convergence is achieved.

We generalize the above method to higher dimensions.
With the electric-field along the principal axis direction,
E = FEx, the lattice is translation invariant in the per-
pendicular direction and the above construction of the
Dyson’s equation can be carried out independently per
each perpendicular momentum vector. See Supplemen-
tary Material for a detailed discussion. Below, we present
results of the model in one and three dimensions.

We first discuss the linear response regime. Within
the DMFT, the DC conductivity in the limit of zero
temperature and zero electric field can be obtained via
the Kubo formula as opc o lime—0 Yy [ dvpx(v)px(v +
@) fep(v) — Jen(v + W) = Yy [ dvlp(v)]?8(v) with
the spectral function at a given wave-vector k px(v) =
—7 1 Im[v — ex +il' — X7, (v)]~!. Therefore, as long as
() - 0asv — 0,T — 0, the DC conductivity is
independent of the interaction. This argument is simi-
lar to the one used by Prange and Kadanoff [29] for the
electron-phonon interaction. Recent calculations did not
have access to the linear response regime [21, 23, 24].

FIG. 1 confirms the validity of the linear response
analysis. The initial slope of the J — FE relation is in-
dependent of the interaction strength U [26] both in
(a) one and (b) three-dimension. The linear behav-
ior deviates at the field Ey, =~ 0.003 in (a), orders
of magnitude smaller than the renormalized bandwidth
W* = 2W = 0.5 with the equilibrium renormalization
factor z =[1 — Re@Eg(w)/aw];iE:szo.

With increasing E-field, the contribution at £ = U/2 is
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FIG. 2: (color online) (a) Interacting scattering rate, 7;' =
—ImX (w = 0), plotted against (£/T")?. Different colors de-
note different damping I' = 0.0125, - - - ,0.06 with the interval
of 0.0025. For small (E/T"), the numerical results on the 1-d
chain collapse on well-defined lines at U = 1 and 1.5. The
dashed lines are predictions based on the equilibrium self-
energy with the temperature replaced by the non-interacting
effective temperature Teg given in Eq. (8). The remarkable
agreement proves that Joule heating controls the scattering in
the small field limit. (b) Comparison of the current and the
Drude formula estimate with the total scattering rate T' 47,
with qualitative agreement beyond the linear response limit.

a two-step resonant process which can be viewed as a con-
sequence of the energy overlap between the lower /upper
Hubbard bands of the left/right neighboring sites with
the in-gap states present at the Fermi level [27]. The
current peak at E = U is due to the direct overlap of the
Hubbard bands on neighboring sites [18, 27].

The immediate departure from the linear conductivity
at very small fields can be well understood with a Joule
heating scenario in which the Coulombic interaction is
the dominant scattering process and is rapidly modified
by an increasing effective temperature as the field is in-
creased. We first demonstrate this effective temperature
effect by showing in Fig. 2(a) that the scattering rates
from the Coulomb interaction, 7;;' = —Im¥} (w = 0),
for different sets of the damping I collapse onto a scaling
curve as a function of (E/T")? for small E. This scal-
ing is clearly evocative of the well known T2 behavior of
equilibrium retarded self-energies.

In the non-interacting 1-d chain with 73, = 0, the ef-
fective temperature has been obtained in the small field
limit as [15, 17]

_ V6 E

Teff Y T (8)
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Inserting this Teg into the equilibrium perturbative self-
energy [30], we obtain in the weak-U limit

3
! = —ImE (@ = 0, Ter) & T Ao(0)* U Ty, (9)

which is represented by the dashed lines in Fig. 2(a).
Here Ag(0) = (my/I'2+4~2)~! is the non-interacting
DOS at w = 0. The robust agreement in the self-energies
leaves no doubt that the electron scattering is dominated
by the Joule heating with Teg given with Eq. (8) in the
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FIG. 3: (color online) (a) Electric-field driven metal-to-
insulator transition (MIT) in the vicinity of a Mott-insulator
at U = 1.225,T' = 0.00167 and T, = 0.0025 in a 3-dimensional
cubic lattice with electric field in z-direction. The metallic
state at zero field becomes insulating at electric field of magni-
tude orders of magnitude smaller than bare energy scales. De-
pending on whether the electric-field is increased or decreased,
metal-insulator hysteresis occurs with a window for phase-
coexistence. (b) Spectral function and distribution function
fioc(w) with increasing electric-field. The quasi-particle (QP)
spectral weight rapidly disappears near the MIT driven by the
electric-field, opening an insulating gap. The non-equilibrium
energy distribution function indicates that the system under-
goes a highly non-monotonic cold-hot-cold temperature evo-
lution near the MIT.

linear response limit in the presence of interaction. T.g
then deviates strongly from this behavior outside the nar-
row linear regime, as discussed below.

The scattering rate can be directly related to the elec-
tric current via the Drude conductivity J(E) = opc(E)E
with the non-linear DC conductivity opc(F). In the non-
interacting limit, the linear conductivity can be written
as og.pc = 272/(nT\/T2 +442) [15]. In FIG. 2(b), we
plot the Drude formula with the scattering rate I' re-
placed by the total scattering I'voy = I + 7, ! The quali-
tative agreement with the numerical results extends over
a wide range of the E-field, well beyond the linear regime.

Using Eq. (9), the current at small field can be ap-
proximated as J = oo pcE/(1 + E?/E})) with the
departure from the linear behavior occuring around
(from the condition T' = 7'51 at £ = Ejn), Fin =
(872 /3)1/241/2T3/2 JU. This estimate is valid away from
U = 0 and the metal-insulator limit, and agrees well
with FIG. 2(b) [31]. We emphasize that, while negative-
differential-resistance (NDR) behaviors occur typically in
periodic structures due to the Bloch oscillations [32] as
the dashed lines (U = 0) in Fig. 1, the NDR here comes
from strong non-linear scattering enhanced by the Joule
heating.

In the presence of weak dissipation and strong elec-
tronic interactions, the non-equilibrium evolution be-
comes more dramatic. With the effective temperature,
Eq. (8), having a singular limit as ' — 0, the electron
temperature tends to rise very sharply as the field is ap-
plied. This effect, together with a small value of the
renormalized coherent energy scales, causes the system
to immediately deviate from the linear response regime,
preventing itself from overheating. This mechanism, in
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FIG. 4: (color online) Phase diagram of metal-insulator tran-
sition in a cubic lattice driven by (a) electric field and (b)
temperature. The metal-insulator coexistent phase exists be-
tween the metal-to-insulator transition (black line) with in-
creasing E or Ty, and the insulator-to-metal transition (red
line) with decreasing E or Ty,. I' = 0.00167. (c) Effective tem-
perature Teg map with increasing F, with the white line for
the MIT. The white dashed line becomes the phase boundary
with decreasing field. (d) Spectral and distribution functions
for strong U beyond the crossover line [black dashed in (c)].
Quasi-particle states are disconnected from incoherent spectra
and their statistical property becomes strongly non-thermal.

a vicinity of a quantum phase transition, can strongly
modify the state of a system. Indeed, we will show that
there is a region of the parameters U and E for which
the non-equilibrium Dyson’s equations have two distinct
solutions, one corresponding to an incoherent metal and
the other to an insulator.

In Fig. 3(a), we start from a metallic state at U =
1.225, and increase the electric-field from zero. We use
the self-consistent solution at a certain F-field as an in-
put to the next £ run. As discussed above, the system
has an extremely narrow linear response window with
Ein ~ 1074, followed by an NDR behavior. As the
electric-field is further increased, an electric-field-driven
metal-to-insulator RS occurs at Eypr ~ 0.004. Simi-
lar strong non-linear I-V behavior followed by a resistive
transition has been observed in NiO [7]. After gradual
changes in the spectral functions in Fig. 3(b), a finite
insulating gap opens abruptly after the RS. The local
energy distribution function fioc(w), defined as fioe(w) =
—3ImG<(w)/ImG" (w), evolves from the FD function at
zero field to a shape with a high effective temperature.
At the RS, the Joule heating nearly stops and the TB
lattice goes back to the low temperature state [33]. We
emphasize that the energy scale hierarchy

Fin < Byt < w* (10)

observed above differs markedly from that in the quan-
tum dot transport [34] in which the dissipation occurs
outside the quantum dot region and the bias scale for
decoherence is comparable to the QP energy scale.

Fig. 4(a-b) show the metal-insulator coexistence. Our
estimate of the threshold electric field Eyr ~ 0.004 at

4

U = 1.225 can be converted to Eygr = 107 — 10° V/m
if U = 1— 10 eV. Based on the balance between the
Joule heating and the dissipation [15, 36], a scaling ar-
gument [35] implies that the critical field decreases with
damping as Eyir o VT. Therefore, accounting for the
range of experimental threshold fields would require I" on
the order of 1073 meV. We stress that the model success-
fully captures, at a microscopic level, the qualitative fea-
tures of the resistive switching phenomenon but a more
quantitative analysis calls for a better modelling of the
dissipative mechanisms.

While the phase diagram for the RS of Fig. 4(a) gen-
erally reflects that of the equilibrium MIT [28] in (b),
the upturn of the upper critical E-field (black line) in
Fig. 4(a) with increasing U is counter-intuitive. This
originates from an interplay of different scaling regimes
for large and small U separated by the crossover line
(dashed line) at about Ucoss/W = 1.32. For small
U < Ugross, the QP bandwidth W* is larger than Teg and
the scaling relation Teg < \/E/U [35] results well away
from the linear regime, Eq. (8). However, for U > Ucgross
with W* < Tog, Tegr increases with E much weakly [35],
as seen in Fig. 4(c). This slow increase of T, allows a
larger critical field and leads to the maximum Epnr(U)
near U = Ucoss — a prediction which can be experimen-
tally verified. The spectral and distribution functions
in Fig. 4(d) for U > Ucoss, show the QP states spec-
trally disconnected incoherent electrons, and a strong
non-thermal behavior even at E/W* ~ 0.1. To evalu-
ate Tug, fit to a Fermi-Dirac function with T,g has been
performed on data satisfying | fioc(w) — 0.5] < 0.25.

Even though the calculations performed here are on ho-
mogeneous lattices, the phase coexistence suggests that,
under a uniform field, the system can be spatially seg-
regated into metal and insulator regions which in turn
have inhomogeneous temperature distribution with com-
plex thermodynamic states. The hot metallic regions will
be oriented in the direction of the field, forming experi-
mentally observed current-carrying filaments.

The Joule heating scenario has been previously in-
voked in the literature for resistive switching in disor-
dered films [36]. Our calculations of the coexistence of
two distinct non-equilibrium steady-state solutions in the
framework of a relatively simple quantum mechanical
model could be applicable to NiO [7] and Cr;Vy_, O3 [37]
systems where metal-to-insulator transitions occur with
increasing temperature. Our calculation ignores long-
range anti-ferromagnetic correlations and does not ad-
dress switching from ordered insulating phases. Further
extensions to cluster-DMFT would allow a realistic treat-
ment of the electronic structure and could successfully
address the case of VOs.
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