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We introduce a principle unique to disordered solids wherein the contribution of any bond to
one global perturbation is uncorrelated with its contribution to another. Coupled with sufficient
variability in the contributions of different bonds, this “independent bond-level response” paves the
way for the design of real materials with unusual and exquisitely tuned properties. To illustrate
this, we choose two global perturbations, compression and shear. By applying a bond removal
procedure that is both simple and experimentally relevant to remove a very small fraction of bonds,
we can drive disordered spring networks to both the incompressible and completely auxetic limits
of mechanical behavior.

The properties of amorphous solids are essentially and
qualitatively different from those of simple crystals [1]. In
a crystal, identical unit cells are interminably and sym-
metrically repeated, ensuring that all cells make identical
contributions to the global response of a solid to an ex-
ternal perturbation [2, 3]. Unless a crystal’s unit cell
is very complicated, all particles or inter-particle bonds
contribute nearly equally to any global quantity, so that
each bond plays a similar role in determining the physical
properties of the solid. For example, removing a single
bond from a perfectly ordered array or network decreases
the overall elastic strength of the system, but in such a
way that the resistance to shear and the resistance to
compression drop in tandem [4], leaving their ratio nearly
unaffected. Disordered materials are not similarly con-
strained. We will show that as a consequence, one can
exploit disorder to achieve a unique, varied, textured and
tunable global response.

A tunable global response is a corollary to a new prin-
ciple that emerges for disordered matter: independent
bond-level response. This independence refers not only
to 1) the significant variation in the response at the indi-
vidual bond level, but also, and more importantly, to 2)
the dearth of strong correlations between the responses
of any specific bond to different perturbations. To il-
lustrate this principle, we consider the specific perturba-
tions of compression and shear. We construct networks
in which individual bonds are successively removed to
drive the overall system into different regimes of behav-
ior characterized by the ratio G/B of the shear modulus,
G, to the bulk modulus, B. Starting from the same ini-
tial network, we can remove as few as 2% of the bonds
to produce a network with a value of G/B that is either
nearly zero (incompressible limit where the Poisson ra-
tio is ν = 1/(d − 1) in d dimensions) or nearly infinite
(maximally auxetic with ν = −1 [5]) merely by remov-
ing different sets of bonds. Moreover, by using different
algorithms or starting with different networks, one can

confine the region within which the bonds are removed
to strips of controllable size, ranging from a few bond
lengths to the size of the entire sample [6]. This has the
practical consequence that one can achieve precise spatial
control in tuning properties from region to region within
the network – as is needed for creating origami [7, 8] or
kirigami [9] materials.

We construct networks numerically by starting with a
configuration of particles produced by a standard jam-
ming algorithm [10, 11]. We place N soft repulsive par-
ticles at random in a box of linear size L and minimize
the total energy until there is force balance on each par-
ticle. We work in either two or three dimensions and
start with a packing fraction that is above the jamming
density. After minimizing the energy of a configuration,
we create a network by replacing each pair of interact-
ing particles with an unstretched spring of unit stiffness
between nodes at the particle centers [12]. We charac-
terize the network by the excess coordination number
∆Z ≡ Z −Ziso, where Z is the average number of bonds
at each node and Ziso ≡ 2d − 2d/N is the minimum for
a system to maintain rigidity in d dimensions [13]. We
note that networks produced this way have no long-range
order [10], unlike networks constructed by randomly dis-
placing cites on a lattice [14, 15].

For each network, we use linear response to calculate
the contribution Bi of each bond i to the bulk modulus,
B =

∑
iBi. (Bi is proportional to the change in energy of

bond i when the system is uniformly compressed, see the
Supplementary Materials for details). The distribution
of Bi in three dimensions is shown in blue in Fig. 1. In
all plots, data is averaged over 500 networks, each with
approximately 4000 nodes and an initial excess coordi-
nation number ∆Zinitial ≈ 0.13 (corresponding to a total
number of bonds that is about 2% above the minimum
needed for rigidity).

Similarly, we can start with the same initial network
and calculate Gi, the contribution of each bond to the
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shear modulus, G =
∑
iGi. (A finite system is not com-

pletely isotropic, so the shear modulus varies with direc-
tion [16]; we calculate the angle-averaged shear modu-
lus, which approaches the isotropic shear modulus in the
infinite system-size limit [17].) The resulting distribu-
tion for Gi is shown in purple in Fig. 1. Note that the
distributions of the bond contributions to B and G are
continuous, broad, and non-zero in the limit Bi, Gi → 0.
That is, some bonds have nearly zero contribution to the
bulk or shear modulus while others contribute dispro-
portionately. For both B and G, the distribution forms a
power law at low values of Bi or Gi, which is then termi-
nated above 〈Bi〉 and 〈Gi〉 by approximately exponential
cut-offs. Such significant variation in bond-level response
is consistent with previous observations [18, 19] and is in
stark contrast to a perfect crystal where the distributions
would be composed of discrete delta functions.
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FIG. 1. Variation in bond-level response. Distribution on
a log-linear scale (inset: log-log scale) of the contribution of
each bond to the macroscopic bulk and shear moduli, Bi and
Gi, for 3d networks with ∆Zinitial ≈ 0.13. Here i indexes
bonds. At low Bi or Gi, the distributions follow power-laws
with exponents−0.51 and−0.38, respectively. At high values,
the distributions decay over a range that is broad compared
to their means, 〈Bi〉 and 〈Gi〉.

We next ask if there is a correlation between how an
individual bond responds to shear and how it responds to
compression. Do bonds with a large contribution to the
bulk modulus also have a proportionately large contri-
bution to the shear modulus? Figure 2a shows the joint
probability distribution P (Bi, Gi). A strong positive cor-
relation between Bi and Gi would produce a linear trend
on this graph, which is clearly not observed. We con-
clude that the correlations are weak, although we note
that they are also not vanishingly small (see Supplemen-
tary Material). This lack of strong correlation between
Bi and Gi is again qualitatively different from what one
would find for a simple crystal. Thus, Figs. 1 and 2a il-
lustrate a previously-unrecognized property that is well
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FIG. 2. Independence of bond-level response. (A) Joint
probability distribution of Bi and Gi for 3d networks with
∆Zinitial ≈ 0.13. There is little apparent correlation between
the response to compression (Bi) and to shear (Gi) for a given
bond i. (B) The value of G when bonds with the largest (pur-
ple squares) and smallest (purple circles) Bi are removed is
nearly indistinguishable from G when bonds are removed at
random (purple crosses). Similarly, B is very similar whether
bonds with the largest Gi (blue triangles) are removed or
bonds are removed at random (blue pluses).

obeyed by our disordered networks: independent bond-
level response.

This new property suggests that one can tailor the be-
havior of the network by selectively removing (pruning)
those bonds that contribute more or less than the aver-
age to one of the moduli. By so doing, one can decrease
one modulus with respect to the other.

First, we consider the known case of rigidity percola-
tion [4, 20, 21], where a bond is picked at random and
removed. This pruning is repeated until the system be-
comes unstable at ∆Z = 0. We have implemented a
slight variation of this procedure: at each step, a bond is
removed only if each node it connects has at least d + 1
remaining bonds in d dimensions. This is the condition
for local stability of a particle in the original jammed
packing [22]. As the excess coordination number de-
creases, the bulk and shear moduli vanish together, so
that G ∼ B ∼ ∆Z [4, 20, 21][23] (see Fig. 2b). There-
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fore, as shown in Fig. 3, G/B is independent of ∆Z.
We now implement the idea of selected -bond removal

in a variety of ways. First we remove the bond with the
smallest Bi, namely the weakest contribution to the bulk
modulus (provided, as above, that each node connected
to this bond has at least d+1 remaining bonds). Since the
distribution P (Bi) is continuous and nonzero as Bi → 0,
bond removal has almost no effect on the bulk modu-
lus. However, since there is little correlation between the
contribution of each bond to the bulk and shear mod-
uli, there is a much larger effect on the shear modulus.
Once the bond has been removed, the contributions Bi
and Gi of the remaining bonds to the moduli must be
recalculated because they depend on the connectivity of
the entire network. This process of removing the bond
with the smallest Bi and then recalculating the values of
Bi for the remaining bonds is then repeated many times.
Figure 2b shows that when bonds with the smallest Bi
are successively removed, the shear modulus is linearly
proportional to ∆Z. Furthermore, it is quantitatively in-
distinguishable from the case where bonds are removed
at random. The ability to alter the behavior of B with-
out affecting the behavior of G is a clear demonstration
of the principle of independent bond-level response.

Since removing bonds with the smallest Bi has little
effect on the bulk modulus, we would expect G/B → 0
as ∆Z → 0. As shown in Fig. 3, we indeed find that
G/B ∼ ∆ZµB− , with µB− = 1.01 ± 0.01. This behavior
is identical to the scaling found in the original jammed
sphere packings, where ∆Z is lowered by decompressing
the system.

We can drive the same initial network to the oppo-
site limit, G/B → ∞, by successively removing bonds
with the largest contribution to B. As before, indepen-
dent bond-level response predicts that the shear modu-
lus will again decrease linearly with ∆Z, as we indeed
find (see Fig. 2b). However, the bulk modulus will de-
crease more quickly, as prescribed by the high Bi tail of
the distribution, suggesting that the ratio G/B should
increase. The result of this successive bond-removal al-
gorithm is shown by the blue squares in Fig. 3. We find
that G/B ∼ ∆ZµB+ , where µB+

= −7.96 ± 0.01. Thus,
the increase in G/B occurs with a much steeper power
law than the decrease of G/B when the bond with the
smallest contribution to B is removed.

The algorithms mentioned above can be extended in
a number of ways. As a further example, one can re-
move the bond with the largest contribution to the shear
modulus to drive G/B towards zero. In this case, inde-
pendent bond-level response implies that the bulk mod-
ulus will respond as if bonds were removed randomly, so
that B ∼ ∆Z (see Fig. 2b). However, the shear modulus
decreases more rapidly; we find G/B ∼ ∆ZµG+ , where
µG+ = 1.82± 0.01 (purple diamonds in Fig. 3).

Note that the presence of a non-trivial zero-frequency
vibrational mode (which our bond-cutting procedure
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FIG. 3. Tuning global response in three dimensions. The ratio
of shear to bulk modulus, G/B, for four pruning algorithms.
Error bars (included) are smaller than the symbols. Lines are
fits to the data over the indicated range and have slopes, from
top to bottom, of -7.96, -0.01, 1.01, and 1.82. Starting with
the same initial conditions, we can tune global response by 16
orders of magnitude by pruning of order 2% of the bonds.

does not explicitly forbid) would herald an instability in
the structure. We look for such modes by diagonalizing
the dynamical matrix, but do not observe them until the
system is at or extremely close to isostaticity [24] If we
remove bonds with the smallest Gi, however, we find that
zero modes appear when ∆Z is still quite large, prevent-
ing G/B from diverging as we would expect. A variant
of our procedure could prevent this (e.g. by including
a constraint that a removed bond not create any zero
modes).

We can tune two-dimensional networks with equal
ease. We construct spring networks in two dimensions
with approximately 8000 nodes and an initial coordina-
tion number of ∆Zinitial ≈ 0.047, which is about 1%
above the minimum needed for rigidity. As shown in
Fig. S2, the behavior of G/B is qualitatively similar to
Fig. 3. When bonds with the smallest Bi are removed,
we find that G/B ∼ ∆ZµB− , with µB− = 1.27 ± 0.01.
This is close to the behavior known for jammed pack-
ings (G/B ∼ ∆Z1), though it is certainly not as clean
as in three dimensions. When we prune bonds that
resist compression the most (largest Bi), we find that
G/B ∼ ∆ZµB+ , where µB+

= −5.36 ± 0.01. At the
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smallest ∆Z, G/B ∼ 1010. Finally, when bonds with the
largest Gi are removed we find that G/B ∼ ∆ZµG+ , with
µG+ = 3.05±0.01. AlthoughG/B diverges/vanishes with
slightly different power laws in two and three dimensions,
the overall effect is no less dramatic.

Note that our procedures are remarkably efficient in
tuning G/B. Figure 3 shows that by removing about 2%
of the bonds in three-dimensional networks we can obtain
a difference of more than 16 orders of magnitude in the
tuned value ofG/B, depending on which bonds we prune.
In two dimensions, we are able to obtain differences in
G/B that span over 17 orders of magnitude by pruning
only ∼ 1% of the bonds. This is even more surprising
given the fact that Bi and Gi are somewhat correlated.
The fact that we can still tune the ratio of the moduli so
drastically demonstrates the robustness of the principle
of independent bond-level response.

The limit G/B → 0 corresponds to the incompress-
ible limit of a solid where the Poisson ratio, ν = (d −
2G/B)/[d(d − 1) + 2G/B] in d dimensions, reaches its
maximum value of ν = +1 (in 2d) or +1/2 (in 3d). The
limit G/B → ∞ corresponds to the auxetic limit where
the Poisson ratio reaches its minimum value of ν = −1.
By using these different pruning algorithms, we can tai-
lor networks to have any Poisson ratio between these two
limits. This ability provides great flexibility in the design
of network materials.

For many materials [5] the Poisson ratio decreases with
increased connectivity of the constituent particles and in-
creases with packing density. We note that neither of
these correlations hold for the algorithms we have in-
troduced for tuning the Poisson ratio (or ratio of shear
and bulk moduli). We can reach G/B → ∞ (minimum
Poisson ratio) or G/B → 0 (maximum Poisson ratio)
by removing the same number of bonds from the same
starting configuration. Neither the overall connectivity
nor the overall density is different in the two final states.
Thus, our procedures for producing tunable Poisson ratio
materials are fundamentally different from correlations
considered in the literature.

We turn now to spatial correlations between cut bonds.
Driscoll et al. [6] have conducted numerical simulations
and experiments in which they removed bonds with the
largest strain under uniaxial or isotropic compression or
shear. They showed that the cut bonds form a damage
zone whose width increases and diverges as the initial ex-
cess coordination number, ∆Zinitial → 0; for sufficiently
small ∆Zinitial, the pruned bonds are homogeneously dis-
tributed throughout the entire system. Outside this zone,
they found that the network is essentially unaffected.

Since Bi (or Gi) in our simulations is proportional to
the strain squared, our procedure is identical to that of
Driscoll et al. [6] if we remove bonds with the largest
contribution to the relevant elastic constant. So far, all
the data we have presented are for systems with a suffi-
ciently small ∆Zinitial so that the distribution of the cut

bonds appears homogeneous. However, we find that G/B
diverges/vanishes regardless of ∆Zinitial (see Fig. S3),
demonstrating that the ability to drastically tune G/B
does not depend on the spatial distribution of removed
bonds or system size. When we remove the bond with the
smallest contribution to B or G, the bonds are removed
homogeneously throughout the system, independent of
∆Zinitial. Our results, combined with the work of Driscoll
et al., means that elastic properties can be tuned not only
globally but also on a local scale controlled by the initial
connectivity – one region may be highly incompressible
while a nearby region may be highly auxetic. This offers
tremendous flexibility in the design of new and interest-
ing materials.

We have presented a number of ways of tuning G/B
in disordered networks by using the principle of indepen-
dent bond-level response. However, these ideas may be
extended to other global properties as well. For example,
one can imagine controlling thermal expansion by tuning
nonlinear terms. One can even consider different classes
of systems, such as a disordered resistor network [25, 26]
where one may be able to independently adjust the com-
ponents of the conductivity tensor to design a highly
anisotropic device. In general, to tune two properties
relative to each other, one first must be able to quan-
tify contributions at the single-bond level. The principle
of independence holds if 1) there is a sufficient variation
in the bond-level contributions (i.e. Fig. 1), and 2) the
contribution of a bond to one property is not strongly cor-
related with its contribution to the other (i.e. Fig. 2a).
One could then independently tune these properties by
removing bonds that contribute disproportionally to one
property or the other.

Our results demonstrate that disordered networks pro-
vide particularly elegant opportunities for constructing
mechanical metamaterials with tunable, flexible and spa-
tially textured response. However, the algorithms we
have presented are not restricted to artificially con-
structed materials. Compressing a real network com-
posed of springs that fail when stressed past a given
threshold would lead to the same network as removing
springs with the largest Bi, provided that the thresh-
old is sufficiently small. It is also not beyond imagina-
tion that one could selectively break bonds at the nano-
scale level in response to global perturbations in com-
plex solids. Indeed, biology appears to be able to target
structures in networks that are under particularly high
stress and to enhance their strength (such as in trabecu-
lar bone [27]). Alternatively, there may be mechanisms to
buckle or sever strongly stressed fibers (such as in actin
networks [28]). It is interesting to ask if such selective
repair or destruction of biological structures changes ra-
tios of different mechanical responses such as the Poisson
ratio.
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