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We experimentally demonstrate that spin dynamics and the phase diagram of spinor condensates
can be conveniently tuned by a two-dimensional optical lattice. Spin population oscillations and a
lattice-tuned separatrix in phase space are observed in every lattice where a substantial superfluid
fraction exists. In a sufficiently deep lattice, we observe a phase transition from a longitudinal
polar phase to a broken-axisymmetry phase in steady states of lattice-confined spinor condensates.
The steady states are found to depend sigmoidally on the lattice depth and exponentially on the
magnetic field. We also introduce a phenomenological model that semi-quantitatively describes our
data without adjustable parameters.
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A spinor Bose-Einstein condensate (BEC) confined in
optical lattices has attracted much attention for its abil-
ities to systematically study, verify, and optimize con-
densed matter models [1–3]. An optical lattice is a ver-
satile technique to enhance interatomic interactions and
control the mobility of atoms [4–6]. Atoms held in shal-
low lattices can tunnel freely among lattice sites and
form a superfluid (SF) phase. The tunneling rate is sup-
pressed while the on-site atom-atom interaction increases
in deeper lattices. This may result in a transition from
a SF phase to a Mott-insulator (MI) phase at a critical
lattice depth, which has been confirmed in various scalar
BEC systems [4–7]. In contrast to scalar BECs, spinor
BECs have unique advantages due to an additional spin
degree of freedom. The predicted SF-MI phase transi-
tion is remarkably different in lattice-trapped antiferro-
magnetic spinor BECs, i.e., the transition may be first
(second) order around the tip of each Mott lobe for an
even (odd) occupation number [1, 8].

Spin-mixing dynamics and phase diagrams of spinor
BECs in free space, due to the interplay of the spin-
dependent interaction U2 and the quadratic Zeeman en-
ergy qB, have been well studied using sodium [9–16] and
rubidium atoms [17–20]. Known phenomena in spin-
1 spinor BECs include spin population oscillations re-
sulting from coherent interconversions among two |F =
1,mF = 0〉 atoms, one |F = 1,mF = +1〉 atom, and one
|F = 1,mF = −1〉 atom. Spin oscillations are harmonic
except near a separatrix in phase space where the oscil-
lation period diverges. The separatrix sets a boundary
between the U2-dominated region and the qB-dominated
region [1, 15]. Richer spin dynamics are predicted in
lattice-trapped spinor BECs, which allow for many im-
mediate applications. These include constructing a novel
quantum-phase-revival spectroscopy driven by a compe-
tition between U2 and spin-independent interaction U0,
understanding quantum magnetism, and realizing mas-
sive entanglement [1, 3]. However, dynamics of lattice-
trapped spinor BECs remain less explored, and most of
such experimental studies have been conducted in ferro-

magnetic 87Rb spinor BECs [21–24].

In this paper, we experimentally demonstrate that
a two-dimensional (2d) optical lattice can conveniently
tune spin dynamics of F=1 antiferromagnetic spinor
BECs. We find that the properties of spinor BECs re-
main largely unchanged in the presence of a shallow lat-
tice, while sufficiently deep lattices introduce some inter-
esting changes. First, in every lattice depth uL that sup-
ports a substantial superfluid fraction, we observe spin
population oscillations after taking spinor BECs out of
equilibrium at a fixed qB . Second, we demonstrate a
lattice-tuned separatrix in phase space, and explain it
using lattice-enhanced spin-dependent interactions. An-
other remarkable result is our observation of a phase tran-
sition from a longitudinal polar (LP) phase to a broken-
axisymmetry (BA) phase in steady states of spinor BECs
confined by sufficiently deep lattices [25]. We find the
steady states depend exponentially on qB and sigmoidally
on uL, which agrees with our phenomenological model.

We create a BEC of 7× 104 sodium atoms fully polar-
ized into the |F = 1,mF = −1〉 state in a crossed optical
trap similar to our previous work [14]. To adiabatically
load the BEC into a 2d lattice, we decompress the op-
tical trap to a value which minimizes intra-band excita-
tions and ensures approximately constant Thomas-Fermi
radii while linearly ramping the lattice potential within
tramp > 40 ms. We construct the 2d lattice in the x̂-ŷ hor-
izontal plane using two linearly-polarized beams which
originate from a single-mode laser at λL = 1064 nm,
have a waist of ∼90 µm at the condensate, and are
retro-reflected to form standing waves. To eliminate
cross interference between different beams, the two lat-
tice beams are frequency-shifted by 20 MHz with re-
spect to each other. uL is calibrated using Kapitza-Dirac
diffraction patterns. All lattice depths studied in this
paper are kept below 15.0(5)ER to avoid SF-MI phase
transitions and thus maintain a sufficient superfluid frac-
tion in our system. Here ER = h2k2L/(8π

2M) is recoil
energy, kL = 2π/λL is the lattice wave-number, M is
the atomic mass, and h is the Planck constant. We ap-
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FIG. 1. (Color online) (a) Time evolutions of ρ0 when
uL = 4.5ER (triangles) and 2.5ER (circles). Solid lines are
sinusoidal fits to extract oscillation periods. Inset: a TOF im-
age taken along the vertical direction (z-axis) at tTOF = 5 ms.
(b) Oscillation period versus qB . Lines are fits based on SMA.
Inset: time evolution of ρ0 near a separatrix. Uncertainties
are extracted from 15-20 repeated Stern-Gerlach measure-
ments. Large uncertainties of ρ0 near the separatrix may
result from shot-to-shot fluctuations, similar to Ref. [11].

ply a resonant rf-pulse of a proper amplitude and dura-
tion to lattice-trapped BECs for preparing an initial state
with any desired combination of the three mF states at
qB/h = 42 Hz, and then quench qB to a desired value.
After holding atoms for a variable time duration thold,
we abruptly switch off all lattice and trapping poten-
tials. The fractional population of each mF state, ρmF

,
is measured with Stern-Gerlach absorption imaging after
a certain time of flight tTOF. The initial ρ0 is 0.46, the
initial relative phase among the three spin states is zero,
and tTOF is 6 ms unless otherwise specified. The total
magnetization m = ρ+1 − ρ−1 appears to be conserved
in every time evolution studied in this paper.

In the presence of a shallow lattice of uL < 5ER, we
observe spin population oscillations similar to those oc-
curring in free space, as shown in Fig. 1. Sharp inter-
ference peaks are observed after we release BECs from
the shallow lattice (see Fig. 1(a) inset), which indicates
coherence and superfluid behavior in the system. As the
lattice is made deeper, the separatrix position shifts to
a much higher qB, and the spin oscillations damp out
more quickly (especially in the vicinity of each separa-
trix). These fast damped oscillations make it hard to
extract oscillation periods and precisely locate each sep-
aratrix even at a moderate uL (e.g., 4.5ER), as shown
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FIG. 2. (Color online) (a) Time evolutions of ρ0 at qB/h =
42 Hz and m = 0. Inset: a schematic of our lattice setup and
an illustration of the resulting lattice potential. Lines are fits
to guide the eye (see Ref. [27]). (b) Similar to Panel(a) except
that each beam is not retro-reflected.

in Fig. 1(b). A typical anharmonic spin oscillation near
a separatrix is shown in the inset in Fig. 1(b). We find
our system can be understood by two models: the Bose-
Hubbard (BH) model discussed in Ref. [3] for uL > 5ER,
and the single-spatial mode approximation (SMA) de-
fined in Ref. [26] for uL < 5ER. The BH model has three
important terms: U0, U2, and the tunnelling energy J
among adjacent lattice sites. U2 is proportional to the
atomic density in each lattice site, and is positive (nega-
tive) in F=1 23Na (87Rb) BECs. In fact, U2/U0 ≃ 0.04
for our 23Na system [3], and U2 ≃ qB at each separatrix
for the initial state studied in Fig. 1 [15]. The observed
lattice-tuned separatrix in phase space (i.e., the separa-
trix position shifts with uL) is thus mainly due to the
fact that U2 greatly increases with uL. Fig. 1(b) shows a
good numerical example: U2/h is increased from 14 Hz
to 32 Hz by changing uL from 2.5ER to 4.5ER.

Spin oscillations completely damp out and spinor
BECs reach their steady states when thold is long enough
(see Fig. 2(a)). Sufficiently deep lattices are found to
bring some interesting changes to the steady states. Fig-
ure 2(a) demonstrates one of such changes: once uL is
sufficiently large, the steady states undergo a phase tran-
sition from a LP phase (where ρ0 = 1) to a BA phase
(where 0 < ρ0 < 1) at m = 0. We repeat the same
measurements with only one parameter changed, i.e., by
blocking the retro-reflected path of each lattice beam to
eliminate standing waves and construct a crossed optical
dipole trap (ODT). Its resulting trap depth is uODT, as
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FIG. 3. (Color online) (a) ρ0 in steady states as a function of uL (main figure) and |m| (inset figure). Solid lines are predictions
derived from Eq. (2). The dashed and dotted lines respectively represent a sigmoidal fit and ρD≈0

0 (see Ref. [25]). (b) A typical
TOF image. Using Method-1, the extracted D is 53% from this image (see Ref. [28]). (c) Density profile (red dotted line) of
the image shown in Panel (b) through all interference peaks. Using Method-2 (blue solid line), the extracted D is 52.5% (see
Ref. [28]). The black dashed line highlights the quantum depleted fraction. (d) Wx (triangles), Wz (squares), and D (circles)
in steady states as a function of uL. The widths are normalized by kL. Lines are respectively sigmoid fits to Wx and D, and a
linear fit to Wz.

illustrated in Fig. 2(b) inset. The power of every beam
in Fig. 2(b) is four times of that in Fig. 2(a) to ensure
uL = uODT. Our data in Fig. 2(b) show that spinor
BECs at m = 0 always reach the LP phase when there
are no standing waves. The dramatically different results
shown in Figs. 2(a) and 2(b) imply a necessity to under-
stand this LP-BA transition with lattice-modified band
structures.

We then study spin oscillations and steady states
within a much wider range of uL and m. Steady states
appear to depend sigmoidally on uL at a fixed qB, as
shown in Fig. 3(a). The inset in Fig. 3(a) demonstrates
another surprising result: the observed relationship be-
tween ρ0 and m in steady states at a sufficiently large
uL is well fit by ρ0 = (1 − |m|)/3, which is drastically
different from a well-known mean-field prediction (i.e.,
ρD≈0
0 as illustrated by the black dotted line) [25]. This

mean-field prediction assumes quantum depletion D is
negligible, where D represents the fraction of atoms situ-
ated in non-zero momentum states. Based on Bogoliubov
theory, the D ≈ 0 assumption is correct in free space and
very shallow lattices for our system [7]. We extract D
from TOF images (see Fig. 3 and Ref. [28]) and confirm
D < 5% at uL ≤ 3ER. Note that the trapping frequency
in each lattice site is much bigger than U0/h [7]. Our
TOF images thus reflect the momentum distribution at
the instant of the lattice release and enable us to directly
measure D.

We also find that D increases with thold and uL, and
approaches one in steady states when uL > 10ER, as
shown in Fig. 3(d). This lattice-enhanced quantum de-
pletion mainly results from the lattice-flatten dispersion
relation and lattice-enhanced interactions, and was orig-
inally observed in scalar BEC systems [7]. We develop
one phenomenological model to incorporate the observed
D and find this model can semi-quantitatively describe
our data without adjustable parameters, as shown in
Figs. 3(a) and 4(a). In this model, the steady states

are determined by a comparison between T (k,mF = 0)
and T (0,mF = ±1), where T (k,mF ) is the dispersion
relation of the mF state and k is the atom’s quasi-
momentum. Figure 4(b) illustrates two example compar-
isons. Note that only the first Brillouin zone is consid-
ered, since the population in higher bands is negligible.
Based on Ref. [5–7], we calculate T (k,mF ) as follows,

T (k,mF ) = 4J
∑

α=x,y

sin2
(

πkα
2kL

)

+ER

k2z
k2L

+qBm
2
F , (1)

where a uniform density function is applied along the
vertical direction without a lattice (the z-axis), and J is
calculated using a Wannier density function along each
of the two horizontal directions with lattices. The linear
Zeeman effect is ignored because it remains unchanged
in coherent inter-conversions.
We divide T (k,mF = 0) into two regions based on

T (0,mF = ±1), i.e., set the boundary of the two regions
at kc which satisfies T (kc,mF = 0) = T (0,mF = ±1), as
marked by vertical dotted lines in Fig. 4(b). The disper-
sion relations are significantly flattened as uL increases,
since the predicted width of the first band is ∼ 4J and
J exponentially reduces with uL [6, 7]. To clearly ex-
plain our model using the dispersion relations shown in
Fig. 4(b), we only consider m = 0 and ky = kz = 0
in this paragraph. In Region-1 where 0 ≤ |kx| < |kc|,
atoms in the mF = 0 state always have energy smaller
than those in the mF = ±1 states. The steady states
should thus be the mF = 0 state (i.e., ρ0 = 1), which
equals ρD≈0

0 . When D is big enough, atoms start to oc-
cupy Region-2 where |kc| ≤ |kx| ≤ kL. The mF = 0
atoms in Region-2 are degenerate with mF = ±1 atoms
at certain other momenta. This degeneracy may account
for the phenomenological relationship shown in Fig. 3(a),
i.e, ρ0 = 1/3 in steady states at a big uL. Our data and
the dispersion relations thus suggest that atoms in steady
states may be equally distributed among the three mF

states at a big enough D.
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FIG. 4. (Color online) (a) ρ0 in steady states as a function of qB . Dashed lines are predictions derived from Eq. (2). Green,
blue, black, and red colors respectively represent results at uL = 3, 6, 8, and 10ER. (b) Dispersion relations normalized by
qB as a function of kx when ky = kz = 0. Solid (dashed) lines represent results of the mF = 0 (mF = ±1) states. The black
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uL = 3 and 10ER. (c) ρ0 in steady states versus U2D/qB . Black, red, blue, green, and purple colors respectively represent data
used in Figs. 3(a) and 4(a), and additional data taken at qB/h = 226, 680, and 912 Hz. The solid line is a sigmoid fit.

We can apply similar discussions and our model to all
non-zero m. Thus ρ0 in the steady states is expressed as,

ρ0 ≈

∫

Region−1

n(k)ρD≈0
0 dk+

∫

Region−2

n(k)
1− |m|

3
dk .

(2)

The normalized atomic density in steady states, n(k),
is calculated by the following phenomenological for-
mula: n(k) = (1 − D)δk + D exp[−(k2x/W

2
x + k2y/W

2
y +

k2z/W
2
z )/2]/A, where Wx and Wz are the half widths of

a 2d Gaussian fit to a TOF distribution within the first
Brillouin zone, Wy = Wx, A is a normalization factor,
and δ is a Dirac-delta function [29]. Figure 3(d) shows
that Wx and D sigmoidally increase with uL, and satu-
rate at their peak values when uL > 10ER, i.e., atoms
occupy all available states and quantum depletion sat-
urates the first Brillouin zone in a deep lattice. In con-
trast, Wz appears to be independent of uL, which implies
a constant system temperature.
The observed sigmoidal dependence of steady states

on uL and the exponential dependence on qB can be ex-
plained by our model (Eq. 2), as respectively shown in
Figs. 3(a) and 4(a). Quantitative agreements between
our model and data are found everywhere except in high
magnetic fields where qB/h > 1000 Hz, and in a lattice
where 4ER ≤ uL ≤ 6ER. Limited imaging resolutions
and heating induced by an extra magnetic coil in creat-
ing high qB may both contribute to the discrepancy.
To better understand the LP-BA phase transition, we

plot ρ0 versus U2D/qB (a dimensionless ratio) at m = 0
in Fig. 4(c). Here U2/qB is the key factor determining the
spinor dynamics in free space, D represents the lattice-
induced effect, and bothD and U2 increase with the spin-
independent interaction U0. Two interesting results are
found in Fig. 4(c): all 80 data points taken at very dif-
ferent uL and qB are fit by one sigmoid function; and
the critical point of the LP-BA transition appears to be
U2D/qB ∼ 0.01. (In contrast, each predicted separatrix
locates around U2/qB = 1 based on SMA and parame-
ters studied in Fig. 4.) The LP-BA transition may thus

result from a competition between qB and the “effective”
interaction U2D, i.e., regions with strong enough inter-
actions may prefer the BA phase. In principle, we can
verify this using other methods which can efficiently tune
interatomic interactions, e.g., via Feshbach resonances.

In conclusion, we have conducted the first experimen-
tal study on dynamics and the phase diagram of lattice-
trapped antiferromagnetic spinor BECs. A lattice-tuned
separatrix in phase space and the LP-BA phase transi-
tion in steady states have been observed. We have found
that ρ0, D, and thus the main findings of this paper are
nearly independent of tTOF. We have also developed a
phenomenological model that describes our data without
adjustable parameters.

We thank the Army Research Office and the National
Science Foundation for financial support.
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