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We show that a Hamiltonian with Weyl points can be realized for ultracold atoms using
laser-assisted tunneling in three-dimensional optical lattices. Weyl points are synthetic magnetic
monopoles that exhibit a robust, three-dimensional linear dispersion, identical to the energy-
momentum relation for relativistic Weyl fermions, which are not yet discovered in particle physics.
Weyl semimetals are a promising new avenue in condensed matter physics due to their unusual
properties such as the topologically protected ’Fermi arc’ surface states. However, experiments on
Weyl points are highly elusive. We show that this elusive goal is well-within experimental reach
with an extension of techniques recently used in ultracold gases.
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In relativistic quantum field theory there are three
types of fermions: Dirac, Majorana, and Weyl
fermions [1]. The latter two have never been observed. It
was conjectured that neutrinos could be Weyl fermions
before the discovery of neutrino oscillations ruled out
such a possibility. Nowadays, there is a great excite-
ment on Weyl semimetals: gapless topological states of
matter with bulk low-energy electrons behaving as Weyl
fermions, and intriguing ’Fermi arc’ topological surface
states [2–4]. Besides the fundamental importance of Weyl
fermions and related phenomena such as the Adler-Bell-
Jackiw chiral anomaly, the topological surface states of
Weyl semimetals also hold great potential for applica-
tions [3]. These systems followed the development of
topological insulators [5, 6], emphasizing the role of band
topology in describing exotic phases of matter. However,
experiments on Weyl fermions are highly elusive.

Recent experiments on synthetic magnetic/gauge fields
in ultracold atomic gases [7–17], alongside advances
in photonics [18–24], have propelled these systems as
promising platforms for investigating topological effects
and novel states of matter (see Refs. [25–29] for reviews).
However, Weyl points have been scarcely addressed in
these fields [24, 30–33]. In photonics, a double gyroid
photonic crystal with broken time-reversal and/or parity
symmetry was predicted to have Weyl points [24]. Theo-
retical lattice models possessing Weyl points [30, 32, 33],
and Weyl spin-orbit coupling [31], were studied in the
context of ultracold atomic gases. Due to the elusive
nature of Weyl fermions, a viable and possibly simple
scheme for their experimental realization in ultracold
atomic gases would be of great importance, exploiting ad-
vantages of atomic systems to contribute to Weyl physics
research across disciplines.

Here, we propose the realization of the Weyl Hamil-
tonian for ultracold atoms in a straightforward modifi-
cation of the experimental system that was recently em-
ployed to obtain the Harper Hamiltonian [12]. As an ex-

ample of phenomena inherent to Weyl points, but most
suitable for observing in ultracold systems, we discuss
the unique spherical-shell expansion of a BEC, by ini-
tially exciting eigenmodes close to the Weyl point.

The Harper [34] (also referred to as the Hofstadter [35])
Hamiltonian was recently realized in optical lattices in
the MIT [12] and Munich [13] groups, by employing laser-
assisted tunneling to create synthetic magnetic fields.
Historically, the first synthetic magnetic fields were im-
plemented in rapidly rotating Bose-Einstein condensates
(BECs) by using Coriolis forces [7, 8]. The first im-
plementation using laser-atom interactions was in the
NIST group with spatially dependent Raman optical cou-
pling between internal hyperfine atomic states in bulk
BECs [9]. Methods of generating synthetic magnetic
fields used in optical lattices engineer the complex tun-
neling parameters between lattice sites [11–13]. They
include shaking of the optical lattice, as demonstrated in
the Hamburg group [11], laser assisted tunneling which
realized staggered magnetic fields in optical superlat-
tices [10] and the Harper Hamiltonian in tilted lat-
tices [12, 13], and an all-optical scheme which enables
flux rectification in optical superlattices [14]. One of the
intriguing recent achievements is the realization of Dirac
monopoles in a synthetic magnetic field produced by a
bulk spinor BEC [16]. It should be emphasized that all
lattices with nontrivial topology that were experimen-
tally realized so far were in one or two dimensions. This
work points out how a straightforward inclusion of the
third dimension enables experiments on intriguing and
elusive topological phenomena.

The laser-assisted tunneling scheme [10, 12, 13] re-
quires only far off-resonant lasers and a single atomic
internal state, and thus avoids heating by spontaneous
emission. An early related proposal involved coupling
of different internal states [36]. The scheme used here
is based on the proposal introduced in Ref. [37], and
later modified to enable generation of a homogeneous
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field [12, 13]. With this scheme, we can engineer both
the amplitude and phase of the tunneling matrix ele-
ments in optical lattices. For example, if a cubic D-
dimensional optical lattice has tunneling matrix elements
Jd (d = 1, . . . , D), laser assisted tunneling can in princi-
ple change them to Kde

iΦd , where the phases depend on
the position.

For Weyl points to occur, time-reversal and/or in-
version symmetry must be broken [3, 24]. The two-
dimensional (2D) lattice realized in Ref. [12], which is
our starting point, possesses both symmetries. Tunnel-
ing along the x direction is laser assisted, with the phase
alternating between 0 and π, whereas hopping along y
stays regular [see Fig. 1(a)]. The centers of inversion
symmetry are denoted by orange crosses in Fig. 1(a).
The time-reversal symmetry is a consequence of the fact
that the accumulated phase per plaquette π is equivalent
to a phase of −π. This system is a realization of the
Harper Hamiltonian for α = 1/2, where α is the flux per
plaquette in units of the flux quantum [12, 13]. The lat-
tice has two sublattices (A-B) giving rise to pseudospin.
In quasimomentum representation, the Hamiltonian is
Hα=1/2(k) = −2{Jy cos(kya)σx +Kx sin(kxa)σy}, where
σi denote Pauli matrices; it has two bands, Eα=1/2 =

±2
√

K2
x sin

2(kxa) + J2
y cos

2(kya), touching at two 2D

Dirac points at (kx, ky) = (0,±π/2a) in the Brillouin
zone [38]. Here (Kx, Jy) denote the tunneling ampli-
tudes, and (kx, ky) the Bloch wave vector.

Suppose that we construct a 3D lattice by stacking 2D
lattices from Fig. 1(a), one on top of each other, with
regular hopping (Jz) along the third (z) direction. This
3D lattice is described by the Hamiltonian

HLN (k) = −2{Jy cos(kya)σx+Kx sin(kxa)σy+Jz cos(kza)1},
(1)

where 1 is the unity matrix. The 2D Dirac points have
become line nodes (LN) in the 3D Brillouin zone at
which the two bands touch: ELN = −2Jz cos(kza) ±
2
√

K2
x sin

2(kxa) + J2
y cos

2(kya). Note that both the in-

version and the time-reversal symmetry are inherited
from the α = 1/2 Harper Hamiltonian. In order to
achieve Weyl points, we must break one of these when
adding the third dimension.

To this end, we propose to construct a 3D cubic lattice
with laser assisted tunneling along both x and z direc-
tions as follows. First, tunneling along these directions
is suppressed by introducing a linear tilt of energy ∆ per
lattice site, identical along x and z. It can be obtained
by a linear gradient potential (e.g., gravity or magnetic
field gradient [12]) along the x̂+ ẑ direction. The tunnel-
ing is restored by two far-detuned Raman beams of fre-
quency detuning δω = ω1−ω2, and momentum difference
δk = k1 − k2 [12]. For resonant tunneling, δω = ∆/~,
and a sufficiently large tilt (Jx, Jz ≪ ∆ ≪ Egap) [12],
time-averaging over the rapidly oscillating terms yields

FIG. 1. (color online) Sketch of the 3D cubic lattice with
phase engineered hopping along x and z directions, which
possesses Weyl points in momentum space. Dashed (solid)
lines depict hopping with acquired phase π (0, respectively).
(a) The xy planes of the lattice are equivalent to the lattice
of the Harper Hamiltonian for α = 1/2. Centers of inversion
symmetry for this 2D lattice are denoted by orange crosses.
Green triangles along the axes denote the tilted directions.
(b) A pair of Raman lasers enabling laser assisted tunneling
is sketched with arrows. The 3D lattice can be visualized
as alternating stacks of 2D lattices parallel to the xz plane,
which are shown in (c) and (d); the hopping between these
planes (along y) is regular. The hopping along z is alternating
with phase 0 or π, depending on the position in the xy plane
[see (b), (c), and (d)], which breaks the inversion symmetry.

an effective 3D Hamiltonian

H3D = −
∑

m,n,l

(Kxe
−iΦm,n,la†m+1,n,lam,n,l + Jya

†
m,n+1,lam,n,l

+Kze
−iΦm,n,la†m,n,l+1

am,n,l + h.c. ) .

(2)

Here, a†m,n,l (am,n,l) is the creation (annihilation) oper-
ator on the site (m,n, l), and Φm,n,l = δk · Rm,n,l =
mΦx + nΦy + lΦz are the nontrivial hopping phases,
dependent on the positions Rm,n,l. An inspection of
Eq. (2) reveals that a wealth of energy dispersion re-
lations can be achieved by manipulating the directions
of Raman lasers δk. Next, we choose the directions of
the Raman lasers such that (Φx,Φy,Φz) = π(1, 1, 2),
i.e. Φm,n,l = (m + n)π (modulo 2π). This is schemati-
cally illustrated in Fig. 1(b). It should be noted that a
seemingly equivalent choice (Φx,Φy,Φz) = π(1, 1, 0), will
not be operational, because a nonvanishing momentum
transfer in the tilt direction is necessary for the resonant
tunneling to be restored [12, 13, 38].
A sketch of the 3D lattice obtained with such a choice
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of phases is illustrated in Fig. 1. It can be thought of
as an alternating stack of two types of 2D lattices, par-
allel to the xz plane, which are illustrated in 1(c) and
1(d); hopping between these planes is regular (along y).
The 3D lattice has two sublattices (A-B). Another view
is stacking of 2D lattices described by the Harper Hamil-
tonian Hα=1/2 [Fig. 1(a)], such that the hopping along
z has phases 0 or π, for m+ n even or odd, respectively.
This breaks the inversion symmetry, and under applica-
tion of Bloch’s theorem,

H(k) = −2{Jy cos(kya)σx+Kx sin(kxa)σy−Kz cos(kza)σz}.
(3)

Mathematically, the chosen phase engineering along z has
replaced the identity matrix in HLN with the Pauli ma-
trix σz .
The energy spectrum of the Hamiltonian has two

bands,

E(k) = ±2
√

K2
x sin

2(kxa) + J2
y cos2(kya) +K2

z cos
2(kza),

(4)
which touch at four Weyl points within the first Bril-
louin zone at (kx, ky, kz) = (0,±π/2a,±π/2a). Fig-
ure 2 depicts the energy spectra in the first Brillouin
zone, the Weyl points, and their chiralities. The dis-
persions around Weyl points are locally linear and de-
scribed by the anisotropic Weyl Hamiltonian HW (q) =
∑

i,j qiνijσj [4], where q = k − kW is the displacement
vector from the Weyl point (located at kW ) in momen-
tum space. Here [vij ] is a 3 × 3 matrix, with elements
vxy = −2Kxa, vyx = ±2Jya, vzz = ±2Kza, and zero oth-
erwise. The topological nature of the system is reflected
in the possibility to assign (positive and negative) chiral-
ity, defined as κ = sign(det[vij ]), to the Weyl points [24].
Weyl points are monopoles of the synthetic magnetic

field in momentum space. In order to verify this prop-
erty of our energy nodes, we have calculated the gauge
field, i.e. Berry connection A(k) = i〈u(k)|∇k|u(k)〉,
and the synthetic magnetic field, i.e. Berry curvature
B = ∇k × A(k). The obtained Berry curvature is de-
picted in the insets of Fig. 2, clearly demonstrating that
what we have proposed is a construction of topological
synthetic magnetic monopoles in momentum space of a
3D optical lattice.
These monopoles are robust to any perturbation which

adds a σi term (i = x, y, z) to the Hamiltonian. The only
way for Weyl points to disappear is when two of them
with opposite chirality annihilate (see Supplemental Ma-
terial [39]). This topologically protected nature of Weyl
points can be probed in the proposed setup by adding a
tunable A-B sublattice energy offset in the same fashion
as in Ref. [15], such that the on-site energy at sites with
m+n odd (even) is ǫ (−ǫ). This adds an ǫσz term to the
Hamiltonian in Eq. (3), and shifts the Weyl points par-
allel to the z-axis by tuning ǫ, as illustrated in Fig. 2(a).
By making this term large enough (ǫ = ±2Kz), one can

FIG. 2. (color online) Sketch of the first Brillouin zone of
the lattice depicted in Fig. 1, energy spectrum and Weyl
points. (a) The positions of the Weyl points in the Brillouin
zone and their chiralities are indicated with + and − signs.
If a tunable A-B sublattice energy offset is introduced, Weyl
points move along dotted lines, and can annihilate at points
denoted with stars (see text). (b) Energy spectrum in the
kx = 0 plane [shaded plane in (a)], shows linear dispersion in
the proximity of the Weyl points. The insets show the Berry
curvature of two Weyl points, demonstrating that they are
synthetic magnetic monopoles in momentum space.

drive the annihilation of the Weyl points pairwise either
at (kx = 0, ky = ±π/2a, 0) for ǫ = −2Kz, or at the edge
of the Brillouin zone for ǫ = 2Kz, and open up a gap in
the system.

Now that we have identified the scheme which creates
the Weyl Hamiltonian, we propose schemes for their ex-
perimental detection which are applicable for both ultra-
cold bosons and fermions. In order to verify that we have
points at which the two bands touch in the 3D Brillouin
zone, one can accelerate the initially prepared ultracold
atomic cloud from the ground state position in momen-
tum space towards the Weyl point using a constant force,
and observe the crossover to the second band which can
be revealed by time-of-flight measurements. By push-
ing the cloud in directions which would ’miss’ the Weyl
point, Bloch oscillations would be observed within the
lowest band. Such a scheme was recently used to de-
tect Dirac points in a honeycomb optical lattice [42], and
also to probe the topological phase transition in the Hal-
dane model [15]. Two points are worth emphasizing here.
First, Weyl points are robust and would not be destroyed
by an additional small force [3, 29]. Second, the trajec-
tory of the gas being pushed would not be deflected in
our lattice, because we have a time-reversal symmetric
Hamiltonian.
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FIG. 3. (color online) Surface states and Weyl points. (a)
A slab of finite-width is cut from the 3D lattice along planes
orthogonal to the x̂ − ŷ direction; cross section in the xy
plane is sketched. The two sides of the slab are indicated
with letters L and R. (b) Energy spectrum of the slab. The
two dispersion sheets of surface states (corresponding to the
two surfaces of the slab) are denoted with R (blue) and L
(orange). The intersections of the two sheets are Fermi arcs
(denoted with dashed lines). The arcs connect Weyl points of
opposite chiralities. The insets show examples of the profile
of the Fermi arc surface states across the slab, as indicated
by the green dashed box in (a).

The second scheme to observe the Weyl points is Bragg
spectroscopy [43]. By using an additional pair of Raman
lasers, i.e., a two-photon Raman transition, one can cou-
ple states of the Hamiltonian (3) with a given energy
and momentum difference, and induce excitations from
the lower band to the upper band to probe the band-
structure [43]. This scheme would reveal the existence
of Weyl points with very high resolution as it would not
change the internal atomic state, and therefore not be
sensitive to Zeeman shifts.

The proposed methods are applicable for both bosons
and fermions. Here we discussed atoms in a single spin
state, however, a mixture of spin states provides another
degree of freedom to explore new phenomena, e.g., see
[44]. By using single spin fermions, the Weyl semimetal
phase could be achieved by adjusting the particle density,
i.e., the Fermi level to the energy of the Weyl points.

Realization of Weyl points with ultracold atoms would
open a new frontier of research in Weyl physics, with
potential to exploit unique atomic physics methods of
state preparation and diagnostics. As an example, con-
sider a BEC which is initially formed in the ground state
of the band structure (e.g., see [17]), and then, by ap-
plying a potential tilt for a finite duration, placed (in
quasi-momentum space) at a Weyl point. This state is

a superposition of eigenstates from the vicinity of the
Weyl point, and would start expanding in our 3D lattice
(see Supplemental Material [39]). If we assume isotropic
dispersion around Weyl points (Kx ≈ Jy ≈ Kz), the
magnitude of the group velocity ~

−1|∇kE(k)| is uni-
form. In this case, the BEC has unique expansion in
a form of a spherical shell with radius ∼ ~

−1|∇kE(k)|t
(the shell would have structure depending on the initial
excitation [39–41]).

Weyl semimetals imply the existence of intriguing
topological surface states that come in the form of ’Fermi
arcs’ in momentum space [3]. Topological effects such as
Berry curvature have been experimentally observed in ul-
tracold atomic systems [14, 15]. However, surface states
are difficult to detect with light scattering methods be-
cause one has to distinguish them from the bulk signal
(e.g., see [45] and references therein). Nevertheless, it
is illustrative to show Fermi arcs and surface states in
our model. In Fig. 3(a) we take a slab of our lattice cut
orthogonally to the x̂ − ŷ direction (infinite along the ẑ
and x̂+ ŷ directions), and in Fig. 3(b) we plot the energy
spectrum of this slab E(k), where k = k||(x̂+ŷ)/

√
2+kz ẑ

(see Supplemental Material [39] for details). The Weyl
points are now connected with ’Fermi arcs’ in momen-
tum space (shown with dashed lines). The states on the
arcs are surface states [3], as can be seen from the inset
in Fig. 3(b) (only states from one of the surfaces are
shown). Surface states closer to the Weyl points spread
more into the bulk than those in the center of the arcs.
The Fermi arcs belong to two energy dispersion sheets
of surface states, each one corresponding to one of the
slab surfaces. The two sheets are located adjacent to the
energy dispersion of bulk states [3]; one sheet is on the
bottom (the other is on the top) of the upper (lower,
respectively) band. These two sheets intersect at Fermi
arcs.

In conclusion, we pointed out that Weyl points, and all
of the exciting phenomena that they include, could be ex-
perimentally addressed in the setup that was recently em-
ployed to obtain the Harper Hamiltonian [12, 13]. With-
out phase engineered hopping methods, which are well
developed in atomic systems, the creation of Weyl points
is more demanding, possible only for a reduced number
of space groups and points of symmetry in the Brillouin
zone [46]. An interesting venue would be to include inter-
actions between the atoms [17], which can fundamentally
change the system’s behavior (for an example, consider
the interaction induced phase transition to a topological
insulator in a fermionic 2D optical lattice [47]). Given the
fact that experiments on Weyl points and Weyl fermions
are elusive, fundamentally important, and within reach
in optical lattices, this can open a new frontier of Weyl
physics research.

This work was supported by the Unity through Knowl-
edge Fund (UKF Grant No. 5/13), the NSF through the
Center for Ultracold Atoms, by NSF Award No. PHY-



5

0969731, and an AFOSR MURI, and in part by the U. S.
Army Research Laboratory and the U. S. Army Research
Office through the Institute for Soldier Nanotechnolo-
gies, under contract number W911NF-13-D-0001. We
are grateful to Cody Burton, Woo Chang Chung, Liang
Fu, John D. Joannopoulos, Krešimir Kumerički, Mario
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Note added. After this work was submitted, a few pa-
pers appeared on the arXiv claiming observation of Weyl
points: L. Lu et al., arXiv:1502.03438, S-Y. Xu et al.,
arXiv:1502.03807, and B. Q. Lv et al., arXiv:1502.04684.
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Photon. 7, 294 (2013).

[25] J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, Rev.
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