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We derive generalisations of the Weingarten–Witten QCD mass inequalities for particular multi-
hadron systems. For systems of any number of identical pseudo-scalar mesons of maximal isospin,
these inequalities prove that near threshold interactions between the constituent mesons must be
repulsive and that no bound states can form in these channels. Similar constraints in less symmetric
systems are also extracted. These results are compatible with experimental results (where known)
and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass
than previously derived, mN ≥ 3

2
mπ.

Analytic relationships between low-energy hadronic
quantities are difficult to obtain in Quantum Chromody-
namics (QCD) because it is a strongly interacting field
theory, and only a few such relationships are known.
Consequently, the various inequalities between hadron
masses that have been derived by Weingarten [1], Witten
[2], and (under some assumptions) by Nussinov [3] have
an important place in our understanding of QCD. The
rigorous relations can be summarised by stating that the
pion is the lightest colourless state of non-zero isospin
[1] (mX ≥ mπ for X being any I ≥ 1 isospin-charged
meson), that the pion electromagnetic mass difference
mπ+ −mπ0 is positive [2] and that baryons are heavier
than pions, mB ≥ mπ [1, 4]. The status of QCD in-
equalities is reviewed in Ref. [5]. The known results con-
cern a relatively small number of static quantities, and
it is important to consider whether further relations ex-
ist. In this direction, Nussinov and Sathiapalan [6] found
that in QCD motivated models there are relationships
between scattering lengths in various two-particle chan-
nels, and Gupta et al. [7, 8] showed that an unphysical
combination of ππ interactions is attractive. Finally, Al-
faro et al. [9] showed that relationships existed between
K → π matrix elements of various four-quark operators.
In this letter, we demonstrate that there are additional
rigorous QCD inequalities that pertain to the spectrum
of particular physical, multi-hadron systems and thereby
to the nature of the corresponding hadronic interactions.
As simple examples, we prove that there are no bound
states in the I = 2 π+π+ or I = 3/2 π+K+ channels and
also improve on a previous baryon-meson mass inequal-
ity, showing that mN ≥ 3

2mπ. As with the original in-
equalities, an experimental demonstration that these in-
equalities are violated would strongly suggests that QCD
does not describe the strong interaction (modulo possible
effects of electroweak interactions).

A central observation of Vafa and Witten [4] is that the
measure of the QCD functional integrals that define QCD
correlation functions is positive definite in the absence
of a θ-term or baryon chemical potential (we will ignore
these cases throughout this work). After integrating over
the quark degrees of freedom, the functional integration

measure can be expressed as

dµ =
∏
x,µ,a

dAaµ(x)e−SY M [A]
∏
f

det [D/+ m̃f ] , (1)

where Aµ represents the gauge field, D/ = D/ [A] is the
fermion Dirac operator, m̃f is the bare quark mass of
flavour f , and SYM = 1

2

∫
d4xTr[FµνFµν ] is the Yang-

Mills action with Fµν = [Dµ, Dν ]. Throughout our dis-
cussion, we use a Euclidean metric; for the correlators
that we consider, analytic continuation to Minkowski
space is straightforward. Correlation functions involving
field operators at n spacetime points are defined as

〈O(x1, . . . , xn)〉 =
1

Z

∫
dµ Ô(x1, . . . , xn) , (2)

where Z =
∫
dµ, and the operator Ô results from the op-

erator O after integration over quark fields. These func-
tional integrals are only defined after the imposition of a
regulator, and we assume the use of a regulator that does
not spoil positivity [1, 4]. As a consequence of the posi-
tivity of the measure, field independent relations that are
shown to hold for any particular gauge field configuration
also hold for the integrated quantity, the corresponding
correlation function. Vafa and Witten used measure pos-
itivity to derive the celebrated result that vector symme-
tries do not break spontaneously.

In related work, Weingarten [1] considered correlation
functions from which meson and baryon masses can be
determined, and made use of measure positivity and the
Cauchy-Schwarz and Hölder inequalities to show that re-
lationships exist between the corresponding functional
integrals. The inequalities show that mπ ≤ mX , and
mN ≥ Nf−2

Nf−3mπ for a theory with Nf ≥ 6 flavours. Using

a further constraint on the spectrum of the inverse of the
Dirac operator, shown to hold in Ref. [4], this latter con-
straint was extended to mN ≥ mπ, independent of the
number of flavours.

Our analysis shares similarities with the approaches
discussed above, but also makes use of a novel eigenvalue
decomposition of correlation functions. We begin by con-
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sidering an I = Iz = n many-π+ correlator of the form〈
Ω

∣∣∣∣∣∣
n∏
i

uγ5d̄(xi)

n∏
j

dγ5ū(yj)

∣∣∣∣∣∣Ω
〉
, (3)

where |Ω〉 is the vacuum state and the clusters of points
{xi} (sources) and {yj} (sinks) are taken to be well sepa-
rated in Euclidean space. The combination dγ5ū(y) is an
interpolating operator that creates the quantum numbers
of a π+ meson. We specify to vanishing total momentum
by separately summing over the spatial components of
the yi coordinates and for simplicity set the temporal
components x4i = 0 ∀i and y4j = t ∀j and allow for some
of the source locations to be the same (nonzero corre-
lators result provided that 4Nc or less quark fields are
placed at the same spacetime point). This leads to

Cn ≡ Cn(x1, . . .xn; t; P = 0)

=

〈
Ω

∣∣∣∣∣
n∏
i

uγ5d̄(xi, 0)

[∑
y

dγ5ū(y, t)

]n∣∣∣∣∣Ω
〉
. (4)

As shown in Refs. [10, 11], these correlation functions can
be written in terms of products of traces of powers of the
matrix

ΠA =


P1,1 P1,2 · · · P1,Ns

P2,1
. . .

. . . P2,Ns

...
. . .

. . .
...

PNs,1 · · · · · · PNs,Ns

 , (5)

where Ns is the number of source locations being consid-
ered, the 4Nc × 4Nc blocks are given by

Pi,j(t) =
∑
y

Su(xi, 0; y, t)γ5Sd(y, t; ,xj , 0)γ5 , (6)

and Su and Sd are propagators for the up and down
quarks, respectively. The subscript A indicates that the
matrix depends on the background gauge field and ΠA

is a matrix of dimension N = 4NcNs and by increasing
Ns, this can be taken to infinity.

This can be further simplified in the isospin limit where
the up and down quark propagators are the same, Su =
Sd, and by using the γ5 hermiticity of the Dirac operator
that implies that γ5Sd(y, x)γ5 = S†d(x, y) so that the Pi,j
take the form

Pi,j(t) =
∑
y

Su(xi, 0; y, t)S†u(xj , 0; y, t) . (7)

Consequently, we see that ΠA is a non-negative definite
Hermitian matrix, as are all its diagonal sub-blocks. In
Ref. [10], it was shown that the contributions to the cor-
relation functions Cj for j ≤ N determined on a given

gauge configuration arise as coefficients of the character-
istic polynomial

PA(α) = det(1 + α ΠA) =

N∑
j=0

cj [A]αj (8)

of the matrix ΠA.1 Since the roots of the characteristic
polynomial are determined by the eigenvalues πi of ΠA,
it follows that

cn[A] =

N∑
i1 6=i2 6=...6=in=1

πi1πi2 . . . πin . (9)

Thus c1[A] =
∑N
i=1 πi = tr[ΠA], c2[A] =∑N

i=1

∑N
j 6=i=1 πiπj , . . . , cN [A] = π1 . . . πN = det[ΠA].

Since these eigenvalues are non-negative, we can bound
these expressions by products of the single pion expres-
sion by relaxing the restrictions on the summation above.
That is,

cn[A] ≤
N∑

i1,i2,...,in=1

πi1πi2 . . . πin =

[
N∑
i=1

πi

]n
= cn1 [A] .(10)

From this eigenvalue relation, valid on a fixed background
gauge configuration, we can construct the field indepen-
dent bound, cn[A] − cn1 [A] ≤ 0, that holds for all Aaµ.
Measure positivity then implies that this relation holds
at the level of QCD correlators.2 The large separation
behaviour of 〈cn〉 is governed by the energy of the lowest

energy eigenstates of the system, 〈cn〉 ∼ exp(−E(0)
n t).

We also note that 〈cn1 〉 ≤ σ〈c1〉n for some source-sink
separation independent σ. Together, this implies that

E
(0)
n ≥ n E(0)

1 = nmπ and consequently that there are no
bound states possible in these maximal isospin channels.
Further, is also implies that the two-body interactions
in these systems are repulsive or vanishing at threshold.
This second result follows from the fact that the relations
derived above are valid in a finite volume where the en-
ergy eigenvalues of two particle systems below inelastic
thresholds are determined by the appropriate infinite vol-
ume scattering phase shift [16, 17]. Since the scattering
phase shift near threshold is proportional to the negative
of the non-negative definite energy shift, it must corre-
spond to a repulsive or vanishing interaction.

The two-pion results are in accordance with expec-
tations from chiral perturbation theory (χPT) [18, 19]

1 There are normalisation differences between the cj and Cj , and
for multiple source locations, the cj are linear combinations of the
Cj with different numbers of interpolators at each source. The
spectrum is common to each term in this linear combination.

2 We note that the results hold for lattice QCD discretisations that
preserve measure positivity such as domain-wall [12] and overlap
fermions [13, 14], or Wilson fermions [15] with even Nf .
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which predicts at next-to-leading order (NLO) that

mπa
(I=2)
ππ = −2πχ

[
1 + χ

(
3 logχ− L(I=2)

ππ

)]
, (11)

where χ = [mπ/4πfπ]2, fπ is the pion decay constant,

and L
(I=2)
ππ is a particular combination of low energy

constants (LECs) renormalised at scale µ = 4πfπ. At
tree level, this expression is universally negative, and
at NLO it remains negative given the phenomenologi-

cal constraints on L
(I=2)
ππ . However, the bounds derived

above are statements directly about QCD and do not rely
on a chiral expansion, and in fact provide a fundamental

constraint on L
(I=2)
ππ (the use of single particle QCD in-

equalities to constrain χPT is discussed in Refs. [20, 21]).
The ππ scattering phase shifts can be experimentally ex-
tracted from studies of kaon decays [22–24] and the life-
time of pionium [25], but the direct constraints of the
I = 2 channel are relatively weak. A chiral and disper-
sive analysis of experimental data nevertheless allows for

a precise extraction [26], giving mπa
(I=2)
ππ = −0.0444(10)

and lattice QCD calculations [27–33] are in agreement.
The sign implies that these results are concordant with
the QCD inequalities derived here.

As a corollary, having shown that the (π+)n systems
do not bind, we can follow the discussion of Ref. [5]
and strengthen the nucleon mass bound of Weingarten
to mN ≥ 3

2mπ. This improves on the bounds of
Refs. [1, 6, 34] as it applies for arbitrary Nf and Nc and
the inequality directly involves the pion mass. Further-
more, less complete modifications of the restricted sums

in Eq. (9) show also that E
(0)
n ≥ E(0)

n−j+E
(0)
j for all j < n.

This then implies that the I = 3, π+π+π+ interaction is
separately repulsive at threshold, as are the I = n, (π+)n

interactions. In principle, the form of these interactions
could be computed in the chiral expansion, and the con-
straints derived here would bound the LECs that enter.
Lattice calculations show that the π+π+π+ interaction
is indeed repulsive [35, 36].

The inequalities above concern identical pseudoscalar
mesons formed from quarks of equal mass, but they can
be generalised in a number of ways. In particular, these
inequalities can be extended to the case of unequal quark
masses; thereby analogous results can be derived for mul-
tiple pion systems away from the isospin limit. Further,
by defining

Ki,j(t) =
∑
y

Su(xi, 0; y, t)S†s(y, t; ,xj , 0) , (12)

where Ss(x, y) is the strange quark propagator, in ad-
dition to Pi,j , correlators containing both π+ and K+

mesons can be studied. The matrix KA can be con-
structed from the Ki,j sub-blocks analogously to Eq. (5).
To see how these generalisations arise, we need to exam-
ine the spectrum of the relevant matrices. If we denote
the eigenvalues and eigenfunctions of the Dirac operator
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FIG. 1: Eigenvalues of Su, Sd, SuS
†
u and SuS

†
d for mu = 1

and md = 1.5.

as λi and vi respectively, that is D/ vi = λivi, we can
decompose the quark propagators as

Sf =
∑
i

viv
∗
i

λi +mf
≡
∑
i

σ
(f)
i viv

∗
i , (13)

wheremf is the renormalised quark mass3 and the matrix
ΠA as

ΠA ≡
∑
i

πiviv
∗
i =

∑
i,j

viv
∗
i

λi +mu

(
vjv
∗
j

λj +md

)†
=
∑
i

viv
∗
i (−λ2i +mumd + λi(mu −md))

(m2
u − λ2i )(m2

d − λ2i )
, (14)

with a similar expression for KA (in the second equality
for ΠA, we have used (Coulomb gauge spatial) complete-
ness as we are integrating over the spatial position of the
sink in defining Pi,j). Because of the spectral proper-
ties of the Dirac operator (λi ∈ I, and {λi, λ∗i } both

eigenvalues), the eigenvalues of quark propagators, σ
(f)
i ,

fall on circles (centre (1/(2mf ), 0), radius 1/(2mf )) in
the complex plane. For the matrix ΠA in the isospin
limit, we immediately see that the eigenvalues are real
and non-negative as stated above, occupying the interval
[0, 1/mf ]. Away from the isospin limit, ΠA and KA have
eigenvalues, denoted πi and κi respectively, that occur in
complex conjugate pairs with non-negative real parts and
imaginary parts that are proportional to the mass split-
ting |m1 −m2|. The locii of these eigenvalues are shown
in Fig. 1 for exemplary masses.

The spectral properties4 discussed above are sufficient

3 In what follows, we assume a mass-independent and multiplica-
tively renormalisable regularisation and renormalisation scheme

4 The overlap Dirac operator [13, 14], which is γ5 hermitian and
has eigenvalues on the circle (1 + cos θ, sin θ) ∈ C for 0 ≤ θ < 2π,
is an explicit regulator for which the argument that follows holds.
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to show that even in the less symmetric cases mentioned
previously, the generalisations of the eigenvalue inequal-
ity used in Eq. (10) still hold, at least for certain quark
mass ratios in systems containing up to n = 8 parti-
cles (for example π+π+π+K+) where we have explicitly
checked.5 To see this, we reconsider the eigenvalue sums
that occur in the expressions for correlators6 with the
quantum numbers of (π+)j(K+)n−j , denoted cj,n−j . As
the simplest example we consider

c1,1 ∼
∑
i

∑
j 6=i

πiκj =
∑
i,j

πiκj −
∑
i

πiκi , (15)

and shall show that the last sum is positive. This is
most easily approached in the N →∞ limit in which the
eigenvalue sums become continuous integrals. To make
our notation simpler, we replace λ → iλR with λR ∈
R and subsequently drop the subscript. In this case,
defining

fa,b(λ) =
λ2 +mamb + i λ(ma −mb))

(λ2 +m2
a)(λ2 +m2

b)
, (16)

and π(λ) = fu,d(λ) and κ(λ) = fu,s(λ), we can replace∑
i πiκi by ∫ ∞

−∞
Dλ π(λ) κ(λ) , (17)

where the measure Dλ ≡ dλ ρ(λ) is weighted by the spec-
tral density of the Dirac operator, ρ(λ). Since the spec-
tral density is non-negative, a non-negative integrand
results in a non-negative integral. However, the inte-
grand above is only positive definite for some ranges of
the ratios md/mu and ms/mu (we specify to a mass-
independent multiplicative renormalisation scheme for
the quark masses in which these ratios are scale indepen-
dent; schemes involving a chiral lattice regularisations
such as domain-wall fermions and overlap fermions are
examples) as is shown for this case in Fig. 2. If the mass
ratios are in the allowed region, then c1,1 ≤ c1,0c0,1 and
through the same logic that we employed for I = 2 ππ
systems, we see that Eπ+K+ ≥ mπ+ + mK+ , so I = 3/2
π+K+ scattering can not result in bound states. This
result is in agreement with lattice calculations [37–40].
Outside these parameter ranges, the integral has nega-
tive contributions at intermediate λ but is positive at
large λ; given the expectations of the behaviour of the
spectral density, ρ(λ) ∼ V λ3 for large λ, this suggests
that the integral is always positive in Eq, (17), but this
cannot be proven rigorously. For the important cases of

5 We expect that these results hold for all n and all mass ratios,
but have been unable to prove the necessary relations.

6 The correlators for j π+s and k K+s can be constructed from
the expansion of det(1 + αΠA + βKA) as discussed in Ref. [37].
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FIG. 2: Grey shading indicates the region of non-positivity of
the integrand in Eq. (17). Also shown are relevant physical
mass ratios for π+π+ at md 6= mu and π+K+ and K+K+.

π+π+ at md 6= mu and π+K+, the physical mass ratios
[41] are such that the proof is complete, but for example
for I = 1 K+K+ or D+D+, the mass ratios are such that
the proof fails.

In a more complicated case, such as c3,1, the subtrac-
tions are more involved,

c3,1 ∼
∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

πiπjπkκl (18)

=
∑
i,j,k,l

πiπjπkκl − 3
∑
i

∑
j 6=i

∑
k 6=i,j

(π2
i πjκk + πiπjπkκi)

−
∑
i

∑
j 6=i

(π3
i κj + 3π2

i πjκi + 3π2
i πjκj)−

∑
i

π3
i κi

=
∑
i,j,k,l

πiπjπkκl −
{

3
∑
i,j,k

(π2
i πjκk + πiπjπkκi)

−
∑
i,j

(2π3
i κj + 6π2

i πjκi + 3π2
i πjκj) + 6

∑
i

π3
i κi

}
.

However, by again taking the continuous limit and writ-
ing the eigenvalue sums as (multiple) integrals, the term
in the braces can be proven to be positive for cer-
tain values of md/mu and ms/mu, thereby showing
Eπ+π+π+K+ ≥ 3mπ+ + mK+ . The region of guaranteed
positivity varies with the number of pions and kaons in
the system, but a region exists for all cj,k.

As a further generalisation, we may consider modified
correlators where we replace some of the γ5 matrices in
Eq. (4) by other Dirac structures. We can then use the
Cauchy-Schwartz inequality to derive the related results
that the energies of arbitrary JP states with I = Iz = n
are bounded from below by nmπ in the same manner
in which Weingarten [1] showed that mX ≥ mπ. This
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does not prohibit bound state formation if the quantum
numbers prohibit an n π+ state in the given channel (for
example ρ+ρ+ρ+ with JP = 3−), but limits the amount
of binding that is possible.

In summary, we have shown that the hadron mass in-
equalities previously derived in QCD have an infinite set
of analogues for certain multi-hadron systems that con-
strain the nature of the interactions between the con-
stituent hadrons. These results provide important con-
straints on phenomenological, and lattice QCD studies
of hadron interactions and serve as fundamental tests of
QCD. The scope of the techniques used to derive the
original hadron mass inequalities and the new techniques
introduced here is more general than the two-point corre-
lation functions considered so far, and there are a number
of extensions that may be pursued productively.
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