
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effective Field Theories from Soft Limits of Scattering
Amplitudes

Clifford Cheung, Karol Kampf, Jiri Novotny, and Jaroslav Trnka
Phys. Rev. Lett. 114, 221602 — Published  5 June 2015

DOI: 10.1103/PhysRevLett.114.221602

http://dx.doi.org/10.1103/PhysRevLett.114.221602


CALT-TH-2014-167

Effective Field Theories from Soft Limits

Clifford Cheung,1 Karol Kampf,2 Jiri Novotny,2 and Jaroslav Trnka1

1Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125
2Institute of Particle and Nuclear Physics, Charles University in Prague, Czech Republic

We derive scalar effective field theories—Lagrangians, symmetries, and all—from on-shell scat-
tering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting
order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These con-
straints leave free parameters in the amplitude which are the coupling constants of well-known
theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galileons. Moreover, soft limits
imply conditions on the Noether current which can then be inverted to derive Lagrangians for each
theory. We propose a natural classification of all scalar effective field theories according to two num-
bers which encode the derivative power counting and soft behavior of the corresponding amplitudes.
In those cases where there is no consistent amplitude, the corresponding theory does not exist.

INTRODUCTION

Infrared dynamics are inextricably linked to symmetry.
For example, soft limits in gauge and gravity theories are
fixed by conservation laws [1], while soft limits of pion
amplitudes secretly encode underlying patterns of sym-
metry breaking [2]. Tacitly, symmetries are considered
primary and the corresponding soft theorems secondary.
In this letter we argue for precisely the opposite: by
constructing scattering amplitudes directly and impos-
ing various soft behaviors, we instead derive the theories
and their symmetries.
The idea of building a theory from its scattering ampli-

tudes rather than its Lagrangian is not new. Famously,
tree amplitudes in gauge and gravity theories can be con-
structed solely from considerations of Lorentz invariance
and factorization. The same is true of non-linear sigma
models [3], albeit with the crucial and additional assump-
tion of the so-called Adler zero [4], which describes the
vanishing of pion scattering amplitudes in the soft limit.
The present work is a generalization of this prescrip-

tion with the aim of enumerating all possible effective
field theories of a massless scalar. We focus here on on-
shell tree amplitudes in four dimensions, but our methods
apply to diverse dimensions and loop integrands. In the
soft limit of an external leg, p → 0, the tree amplitude is

A(p) = O(pσ), (1)

where σ is a non-negative integer characterizing the soft
limit degree. Larger values of σ imply cancellations in
the amplitude enforced by relations among the coupling
constants of the underlying theory, i.e. more symmetry.
A massless scalar has the schematic Lagrangian,

L = (∂φ)2
∞∑

m,n=0

λm,n∂
mφn, (2)

where m is even by Lorentz invariance1. In general, the

1 For Lorentz invariants built from Levi-Civita tensors, any odd

soft limit will enforce cancellations among diagrams of
different topologies. For example, an n+ 2 particle am-
plitude includes diagrams with a single λm,n vertex as
well as diagrams with a single propagator connecting a
λm′,n′ vertex to a λm′′,n′′ vertex. By dimensional anal-
ysis, cancellations can only occur if m = m′ + m′′ and
n = n′ + n′′, corresponding to all λm,n for which

ρ = m/n, (3)

for a fixed non-negative rational number ρ characteriz-
ing a particular power counting order in derivatives. For
fixed ρ, the Eq. 2 takes the schematic form

L(ρ) = (∂φ)2F (∂mφn), (4)

for a general function F , where m and n are the smallest
numbers satisfying Eq. 3. Some familiar examples are

L(0) = (∂φ)2F (φ), L(1) = (∂φ)2F (∂φ), (5)

corresponding to theories of free fields and Nambu-
Goldstone bosons, respectively.
For a theory L(ρ) we can impose the soft limit in Eq. 1

to constrain F , yielding a new theory L(ρ,σ). Thus, all
scalar effective theories can be classified by two numbers,
(ρ, σ), which specify the derivative power counting of a
theory together with the degree of its soft limits. With
an explicit Lagrangian, it is straightforward to compute
the scattering amplitude and its soft limit but a more
interesting exercise is the reverse: assume a value of (ρ, σ)
and derive the corresponding theory.
To begin, we construct general ansatze for on-shell tree

amplitudes consistent with Lorentz invariance and fac-
torization but restricted to a particular (ρ, σ) derivative
power counting and soft limit. This generates the span of
all possible amplitudes describing massless scalars. For

number of insertions vanishes by Bose symmetry while any even

number of insertions simplifies to a product of metrics. Thus

there are no parity violating theories of a single scalar.
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(ρ, σ) Theory Parameters

(0,∞) Free 0

(1,2) Dirac-Born-Infeld 1

(2,2) Galileon4,5 2

(2,3) Galileon4 1

TABLE I. Theories with (ρ, σ) derivative power counting and
soft limit degree that have enhanced soft limits.

many values of (ρ, σ) there is no consistent scattering
amplitude, so there is no corresponding theory. Even if
a consistent amplitudes exists, however, this may not be
so interesting if the soft limit is obvious from counting
the number of derivatives per field. By this logic a soft
limit σ ≤ (m+2)/(n+2) is automatic, so the interesting
case is in the opposite regime,

σ >
ρn+ 2

n+ 2
, (6)

after plugging into Eq. 3. Tab. I summarizes those the-
ories which have enhanced soft limits which exceed the
degree expected from naive derivative power counting.
Also listed are the number of physical parameters which
define each theory. Here Galileon4,5 denotes the origi-
nal Galileon theory in a basis where the three point in-
teraction vertex has been removed by a field redefini-
tion and Galileon4 denotes Galileon4,5 truncated to just
the four point interaction. For Galileon4 we have strong
evidence—up to twelve point amplitudes—for an intrigu-
ing O(z3) enhanced soft limit.
Afterwards, we show that fixing (ρ, σ) places con-

straints on the Noether currents which can be used to
derive the Lagrangians for Dirac-Born-Infeld (DBI) and
Galileon.

AMPLITUDES FROM ANSATZE

To begin, we construct an ansatz for on-shell tree am-
plitudes constrained by Lorentz invariance, factorization,
and a specified derivative power counting and soft limit
degree, (ρ, σ). When an ansatz exists, the corresponding
theory can exist.
The on-shell three point amplitude vanishes in any the-

ory due to kinematics, so here we focus on the case where
the leading non-zero on-shell amplitude is four point. An
analogous discussion applies for theories in which the
leading non-zero amplitude is higher point.

Definition of Ansatze

Any scalar n point on-shell scattering amplitude can
be written in terms of the kinematical invariants

sij = (pi + pj)
2 = 2(pi · pj), i, j ∈ {1, . . . , n}, (7)

which is a redundant basis. First of all, by momentum
conservation we can always eliminate all dependence on
the momentum of particle n, so we can restrict to sij
where i, j 6= n. Second, there is an additional constraint
because particle n is on-shell so

∑
i,j 6=n sij = 0. Last of

all, in four dimensions, five generic momenta are neces-
sarily linearly dependent, leading to the so-called Gram-
determinant relations. Since these are non-linear con-
straints, a truly independent set of sij is difficult to com-
pute analytically. Instead it is much simpler to use a
redundant basis of kinematic invariants and mod out by
the redundancy at the end of the calculation.
Locality of the underlying theory enforces stringent an-

alyticity conditions on the tree amplitude, fixing it to be
a rational function of momenta. This is required so that
all non-analyticities in the amplitude come from kine-
matic singularities corresponding to factorization chan-
nels. The general ansatz for the n+2 point amplitude in
a theory with derivative power counting ρ = m/n is then

An+2 =
∑

α

c(0)α (sα1
. . . sαm/2+1

) +
∑

α,β

c
(1)
α (sα1

. . . sαm/2+2
)

sβ

+
∑

α,β

c
(2)
α (sα1

. . . sαm/2+3
)

sβ1
sβ2

+ . . . , (8)

where α labels pairs of external legs that enter into
the numerator factors and β labels factorization chan-
nels whose corresponding off-shell propagators are sβ =∑

i,j∈β sij . Symmetries of the corresponding Feynman

diagrams relate many coefficients c
(k)
α , and moreover the

ansatz is kinematically redundant due to reasons men-
tioned above.

Definition of Soft Limit

A priori, the soft limit of An is obtained by rescaling
one of the external momenta by p → zp with z → 0,
but this procedure does not conserve total momentum.
Instead, to compute the soft limit we apply a complex
momentum shift to the external particles, chosen so as
to conserve total momentum and maintain the on-shell
conditions. The complex deformation is controlled by a
number z that labels a one-parameter family of on-shell
amplitudes An(z) where z → 0 corresponds to a soft limit
p → zp and the deficit momenta are channeled into the
remaining hard particles. While any number of legs may
be shifted, we make the minimal choice of three, dubbed
the “soft shift” in [5]. We then expand in powers of z,

An(z) =

∞∑

s=0

An,sz
s, (9)

where we assume that the soft limit is non-singular. To
enforce the soft limit An = O(zσ) we solve for the coeffi-
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cients c
(k)
α of the ansatz in Eq. 8 subject to An,s = 0 for

s < σ. As noted earlier, the sij satisfy complicated non-
linear constraints, so these equations cannot be solved in
closed form. Instead, we evaluate An numerically many
times at arbitrary kinematical points and expand around

z → 0, yielding linear equations in c
(k)
α which are then

easy to solve. We then plug the solution back into the
ansatz, and the number of independent parameters deter-
mines the number of physical parameters of the theory.

Results

The analysis of three and four point amplitudes is sim-
ple for any ρ. The three point amplitude vanishes by
kinematics, while the four point amplitude is non-trivial
and has a soft limit fixed by the number of derivatives
per field, independent of the explicit forms of operators.
In particular, for generic ρ we have m+2 = 2ρ+2 deriva-
tives and therefore the kinematical ansatz is

A4 =
∑

a1a2a3

ca1a2a3
(s12)

a1(s23)
a2(s31)

a3 , (10)

for a1 + a2 + a3 = ρ + 1. However, in the soft limit
s12, s23, s31 = O(z) so regardless of the particular deriva-
tive structure of the amplitude, A4 = O(zρ+1). No
further cancellations are possible so we cannot obtain
stronger behavior by relating parameters. Next, we con-
sider higher point amplitudes for various values of ρ.

Case: ρ = 0

The soft limit is ill-defined because the Lagrangian se-
cretly describes a free field theory. This is manifest after
a well-chosen field redefinition, φ → φ′(φ), which takes
L(0) = (∂φ)2F (φ) = ∂φ′∂φ′. Hence, while off-shell Feyn-
man diagrams are non-trivial, they all vanish on-shell.
Note that this is not generally true if φ carries a flavor,

which is why O(z) behavior is possible in the non-linear
sigma model [4]. Indeed, this is true even if you consider
only flavor-stripped amplitudes [6].

Case: 0 < ρ < 1

Amplitudes do not vanish in the soft limit, so An =
O(1). This can be derived by contradiction. A vanishing
soft limit requires that for each leg, An → 0 when p → 0.
Enforcing this on each leg sequentially and demanding a
permutation invariant amplitude yields a unique ansatz,

An = pµ1

1 pµ2

2 . . . pµn
n Lµ1µ2...µn , (11)

where Lµ1µ2...µn is a completely symmetric tensor con-
structed from factors of momenta and the metric. This
implies that the number of derivatives cannot be less than
the number of fields, so ρ ≥ 1. This can be easily under-
stood from the symmetry point of view: the theory must
be derivatively coupled to have a vanishing soft-limit.

Case: ρ = 1

The first non-trivial case for a single scalar is ρ = 1
for which m = n and we have one derivative per field.
If we want to impose O(z) behavior in the soft-limit the
theory must be necessary derivatively coupled, i.e. the
corresponding Lagrangian is L(1,1) ∼

∑
λ2n (∂φ)2n. This

simplifies the ansatz for the amplitude (all labels must
appear in sij). For example, for n = 4 and n = 6 we get

A4 = c4 (s12s34 + s13s24 + s14s23) (12)

A6 = 2c24

[
s̃123s̃456
s123

+ . . .

]
+ c6 (s12s34s56 + . . . ), (13)

where the ellipses denote the sum over all permutations
and s123 = s12+s23+s31, s̃123 = s12s23+s23s31+s31s12.
Now we impose an enhanced soft limit by demanding

that An,1 = 0, so An = O(z2). The four-point case is
trivial as s12, s23, s31 ∼ z in the soft-limit and O(z2) is
trivially satisfied and there is no condition on c4. At
six point this is a highly non-trivial constraint which is
satisfied if we set c6 = 2c24.
The same argument can be applied to each higher point

amplitude, so A8 = O(z2) can be used to fix the new cou-
pling coefficient c8 in terms over lower order couplings.
By induction it is then obvious that this infinite system
of equations has at most one solution. Indeed, there is
exactly one solution, and the corresponding c2n conspire
to be the series expansion of

L(1,2) = −1

g

√
1− g(∂φ)2, (14)

where g = 2c4 and ignoring vacuum energy. This is the
scalar part of the DBI action, which describes a fluc-
tuation of a brane in an extra dimension. The hid-
den symmetry is a non-linearly realized higher dimen-
sional Lorentz symmetry. Later on, we give an analytical
derivation of the DBI Lagrangian from the soft limit.

Case: ρ = 2

The inequality in Eq. 6 implies that σ ≥ 2 is an en-
hanced soft limit. The general action has 2n− 2 deriva-
tives on n fields φ. The theory must have at least one
derivative per field, but the remaining n − 2 deriva-
tives can be distributed in various ways among fields, so
schematically L(2,1) ∼

∑∞
n=2 Fn(∂

2n−2φn),where Fn de-
notes a collection of operators with free coefficients which
have 2n − 2 derivatives on n fields. We construct the
ansatz for the amplitude for a given n and impose the
condition that An,1 = 0, so An = O(z2). For n = 4 there
are two independent kinematical structures

A4 = c1(s
3
12 + s323 + s331) + c2(s12s23s31), (15)

whose behavior isO(z3) for arbitrary c1 and c2, as argued
earlier. Going to higher points we find unique solutions
for the constraints: A5 = O(z2), A6 = O(z3), A7 =
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O(z2) while for n = 8 we get two solutions for σ = 2 and
one solution for σ = 3. It is easy to see the amplitude is
generated by the Lagrangian

L(2,2) = λ4O4 + λ5O5, (16)

where O4 ∼ ∂6φ4 and O5 ∼ ∂8φ5 are four and five point
interaction vertices. Indeed, the derivative counting and
structure is precisely that of the four and five point inter-
action vertices of the four dimensional Galileon theories
studied in [7]. The Galileon Lagrangian exhibits a second
order shift symmetry φ → φ+a+bµx

µ and has equations
of motion that are second order in derivatives of φ. The
missing three point interaction can be eliminated via the
Galileon duality (for a detailed discussion see [8]), yield-
ing just the four and point interactions, which we denote
by Galileon4,5.

We have checked up to twelve particles that the am-
plitudes derived from O4 alone yield An = O(z3), which
suggests an even simpler theory

L(2,3) = λ4O4, (17)

which we will refer to as Galileon4.

Case: ρ > 2

We have done some partial analyses for ρ = 3 and
ρ = 4 for n = 5 and for ρ = 3 for n = 6 and indeed there
are unique amplitudes there with non-trivial soft-limit
behavior, i.e. A5, A6 = O(z3) for ρ = 3 and A5 = O(z4)
for ρ = 4. It is very suggestive that these are exactly
the theories found in [9], i.e. theories with higher shift
symmetries.

Case: 1 < ρ = fractional

As discussed earlier, ρ is a non-negative rational num-
ber. Restricting to derivatively coupled theories, ρ ≥ 1,
so we should consider all theories with ρ = m/n for inte-
gers m,n with m ≥ n. For example for ρ = 3/2 we have
σ ≥ 2, and the schematic Lagrangian is

L(ρ,σ) ∼ (∂φ)2 + (∂8φ6) + (∂14φ10) + . . . (18)

For this case we have checked that O(z2) soft behavior is
impossible with (∂8φ6), and first becomes possible with
(∂14φ10). We have done this check for ρ = 3

2 ,
4
3 ,

6
5 ,

8
5

which rules out all theories with operators n < 8 for
σ = 2.

AMPLITUDES FROM EQUATIONS OF MOTION

Our analysis thus far does not prove the existence of
theories, as such a claim would require an accounting of
an infinite number of amplitudes. However, we can finish
the job by using the prescribed soft limits to derive the

Lagrangians for these theories explicitly. The action for
a massless scalar field is

S[φ] =

∫
d4x L(φ, ∂φ) =

∫
d4x

1

2
(∂φ)2 + Sint[φ], (19)

where Sint contains all non-linear interactions. The equa-
tions of motion are

�φ(x) =
δSint[φ]

δφ(x)
. (20)

Equations of motion are identically satisfied when evalu-
ated inside a time-ordered product. Hence, Eq. 20 is valid
when sandwiched between in and out states like that de-
fine the on-shell scattering amplitude A = 〈f |i〉. We thus
obtain 〈f |δSint[φ]/δφ(x)|i〉 = 〈f |�φ(x)|i〉. Transforming
to the Fourier conjugate field φ̃(p) where p ≡ pf −pi and
taking the on-shell limit, p2 → 0, we obtain the LSZ re-
duction formula for the amplitude with the scalar emitted
with momentum p,

A(p) ≡ 〈f + φ̃(p)|i〉 = lim
p2→0

i〈f |δSint[φ̃]

δφ̃(p)
|i〉. (21)

Here A(p) satisfies Eq. 1 in the soft limit if and only if

〈f |δSint[φ]

δφ(x)
|i〉 = ∂µ1

. . . ∂µσ 〈f |Kµ1...µσ (x)|i〉, (22)

for some local operator Kµ1...µn(x), in which case

A(p) = lim
p2→0

iσ+1pµ1
. . . pµσ 〈f |K̃µ1...µσ (p)|i〉. (23)

The assumption of locality is crucial: if the Fourier trans-
formed operator K̃µ1...µn(p) is singular as p goes to zero,
then this will compensate for the pµ1

. . . pµσ factors in
the numerator. However, regularity of the operator at
p → 0 is in principle violated if the theory has cubic ver-
tices, in which case the soft limit can generate collinear
singularities which produce inverse powers of z.
The condition in Eq. 22 is satisfied provided

δSint[φ]

δφ(x)
= ∂µ1

. . . ∂µσK
µ1...µσ (x), (24)

on the support of any equations which hold when eval-
uated inside the time-ordered product, i.e. when sand-
wiched between the in and out states. A priori, Eq. 24
can be true due to algebraic identities or conservation
equations. Let us classify each theory in turn.

Case: (ρ, σ) = (1, 1)

These theories have exactly one derivative per field so
Lagrangian is L (X) = X/2+Lint (X) =

∑
n cnX

n where

X = (∂φ)
2
. The Noether current is

Jµ =
∂L (X)

∂ (∂µφ)
= 2L′ (X)∂µφ, (25)
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and the variation of the action yields

δSint

δφ
= −∂µ

∂Lint (X)

∂ (∂µφ)
= ∂µ (∂

µφ− Jµ) , (26)

which is of the form of Eq. 24 with σ = 1 for any cn.

Case: (ρ, σ) = (1, 2)

Extending to an enhanced soft limit σ = 2 implies
additional constraints on L(X), so the cn are constrained.
Plugging Eq. 26 into Eq. 22 for σ = 2 implies that

〈f |Jµ|i〉 = ∂ν〈f |Lµν |i〉. (27)

However, Jµ = ∂νL
µν cannot be true algebraically, sim-

ply because Lµν involves ∂φ, so ∂νL
µν involves ∂∂φ,

which can never match Jµ, which only involves ∂φ. Con-
sequently, we need a supplemental equation that holds
when evaluated between in and out states. The nat-
ural candidate equation is conservation of the energy-
momentum tensor,

T µν = 2L′ (X) ∂µφ∂νφ− ηµνL (X) . (28)

By derivative counting, there is a unique ansatz for Lµν

for which ∂νL
µν does not involve ∂∂φ when evaluated be-

tween in and out states: Lµν = gφT µν for some constant
g. Plugging this into Eq. 27 we obtain

〈f |Jµ|i〉 = ∂ν〈f |Lµν |i〉 = g〈f |T µν∂νφ|i〉, (29)

where we have used that ∂νT
µν = 0 when evaluated be-

tween in and out states. This formula is automatically
true if Jµ = gT µν∂νφ applies algebraically, which implies
the differential equation

2L′ (X) /g = 2L′ (X)X − L (X) , (30)

whose solution is L (X) ∝ √
1− gX, which is precisely

the DBI action for a single scalar field. In principle there
could be solutions which do not satisfy Jµ = gT µν∂νφ
algebraically. However, our earlier scattering amplitudes
analysis found that there exists only one or zero theories
with a σ = 2 soft limit, so the one and only solution is
DBI.

Case: (ρ, σ) = (2, 2)

These theories are of the form L =
∑

n cn∂
2(n−1)φn.

As before, σ = 2 implies the condition in Eq. 27. As
shown in [10], this constraint is algebraically satisfied
for the Noether current associated with the Galileon. A
subtlety in this case is that the Galileon theory has a
cubic vertex, in which case Lµν can in principle be not
regular at p → 0. However, a field redefinition of the
Galileon can be used to eliminate the cubic vertex [8],
truncating down to Galileon4,5. Note that in an explicit
evaluation of amplitudes shows the further restriction to

only four point interaction vertices, Galileon4, satisfies
stronger soft-limit behavior, σ = 3. We do not yet have
a general proof for this.
Finally, we note that for (ρ, σ) = (1, 2), (2, 2), one can

construct a fully non-perturbative derivation of O(z2)
scaling from symmetries without a priori knowledge of
the Lagrangian. We present the full details in [11].

CONCLUSION

In this letter we have shown that scattering amplitudes
can be used to derive and classify scalar effective field the-
ories. Soft limits and derivative power counting uniquely
fix the Lagrangian of the corresponding effective field the-
ory, and we have derived DBI and the Galileon as exam-
ples. This work is part of a more general program to
construct and classify all possible effective field theories
and symmetries, with the possibility of discovering new
ones.
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