
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Locality of Gravitational Systems from Entanglement of
Conformal Field Theories

Jennifer Lin, Matilde Marcolli, Hirosi Ooguri, and Bogdan Stoica
Phys. Rev. Lett. 114, 221601 — Published  2 June 2015

DOI: 10.1103/PhysRevLett.114.221601

http://dx.doi.org/10.1103/PhysRevLett.114.221601


CALT-TH 2014-162, IPMU14-0349

Locality of Gravitational Systems from Entanglement of Conformal Field Theories

Jennifer Lin,1 Matilde Marcolli,2 Hirosi Ooguri,3, 4 and Bogdan Stoica3

1Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637
2Department of Mathematics, California Institute of Technology, 253-37, Pasadena, CA 91125

3Walter Burke Institute for Theoretical Physics, California Institute of Technology, 452-48, Pasadena, CA 91125
4Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583, Japan

(Dated: March 11, 2015)

The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the
area of a minimal surface in its holographic dual. We show that this relation can be inverted for
any state in the conformal field theory to compute the bulk stress-energy tensor near the boundary
of the bulk spacetime, reconstructing the local data in the bulk from the entanglement on the
boundary. We also show that positivity, monotonicity, and convexity of the relative entropy for
small spherical domains between the reduced density matrices of any state and of the ground state
of the conformal field theory are guaranteed by positivity conditions on the bulk matter energy
density. As positivity and monotonicity of the relative entropy are general properties of quantum
systems, this can be interpreted as a derivation of bulk energy conditions in any holographic system
with the Ryu-Takayanagi prescription applies. We discuss an information theoretical interpretation
of the convexity in terms of the Fisher metric.

PACS numbers: 11.25.Tq

Introduction.— Gauge/gravity duality posits an exact
equivalence between certain conformal field theories
(CFT’s) with many degrees of freedom and higher di-
mensional theories of gravity. It is of obvious interest
to understand how bulk spacetime geometry and gravi-
tational dynamics emerge from a non-gravitating theory.
In recent years, there have appeared hints that quantum
entanglement plays a key role. One important develop-
ment in this direction was the Ryu–Takayanagi proposal
[1, 2] that the entanglement entropy (EE) between a spa-
tial domain D of a CFT and its complement equals the
area of the bulk extremal surface Σ homologous to it,

SEE = min
∂D=∂Σ

area(Σ)

4GN
. (1)

Using (1), [3–9] studied the connection between lin-
earized gravity and entanglement physics of the CFT. In
this letter, we continue this program. We develop tomo-
graphic techniques to diagnose local energy density in the
bulk by the Radon transform of quantum entanglement
data on the boundary. Moreover, we show that proper-
ties of entanglement on the boundary such as the positiv-
ity, monotonicity, and convexity of the relative entropy
are guaranteed by energy conditions in the bulk. As the
positivity and monotonicity of the relative entropy are
general properties of quantum systems, we can interpret
this as a derivation of energy conditions in the bulk for
any holographic system, assuming the Ryu-Takayanagi
formula.
Relative entropy (see e.g. [4]) is a measure of dis-

tinguishability between two quantum states in the same
Hilbert space, for two density matrices ρ0 and ρ1 being
defined as

S(ρ1|ρ0) = tr(ρ1 log ρ1)− tr(ρ1 log ρ0) . (2)

It is positive and monotonic:

S(ρ1|ρ0) ≥ 0 , S(ρW1 |ρW0 ) ≥ S(ρV1 |ρV0 ), (3)

where W ⊇ V . When ρ0 and ρ1 are reduced density ma-
trices on a spatial domain D for two states of a quantum
field theory (QFT), which is the case we specialize to
from this point on, monotonicity implies that S(ρ1|ρ0)
increases with the size of D. That is, over a family of
scalable domains with characteristic size R,

∂RS(ρ1|ρ0) ≥ 0 . (4)

Defining the modular Hamiltonian Hmod of ρ0 implic-
itly through

ρ0 =
e−Hmod

tr(e−Hmod)
, (5)

Eq. (3) is equivalent to

S(ρ1|ρ0) = ∆〈Hmod〉 −∆SEE ≥ 0 (6)

with ∆〈Hmod〉 = tr(ρ1Hmod) − tr(ρ0Hmod) the change
in the expectation value of the operator Hmod (5) and
∆SEE = − tr(ρ1 log ρ1) + tr(ρ0 log ρ0) the change in the
entanglement entropy across D as one goes between the
states.
When the states under comparison are close, the pos-

itivity (6) is saturated to leading order [4, 6, 8]:

S(ρ1|ρ0) = ∆〈Hmod〉 −∆SEE = 0 . (7)

This is the entanglement first law for its resemblance to
the first law of thermodynamics. Indeed, when ρ0 is a
thermal density matrix ρ0 = e−βH/ tr(e−βH), (7) reduces
to ∆〈H〉 = T∆S, an exact quantum version of the ther-
mal first law.
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In general, the modular Hamiltonian (5) associated to
a density matrix is nonlocal. However, there are a few
simple cases where it is explicitly known. When ρ0 is the
reduced density matrix of a CFT vacuum state on a disk
of radius R which we take to be centered at ~x0 = 0 [10],

Hmod = π

∫

D

dd−1x
R2 − |~x|2

R
Ttt(x) , (8)

where Ttt is the energy density of the CFT.
Our goal in this letter is to use the entanglement in the

CFT, in particular the relative entropy, to elucidate local
physics in the bulk (for related recent work see also [3, 7,
11–16]).
Our starting point is a d-dimensional CFT whose vac-

uum state is dual to anti-de Sitter space (AdSd+1). We
consider an arbitrary excited state of the CFT which has
a semiclassical holographic bulk dual, whose metric can
be parametrized as

gAdS =
ℓ2AdS

z2
[

dz2 + (ηµν + hµν) dx
µdxν

]

. (9)

Spacetime indices a, b, . . . run over (z, t, xi) while µ, ν, . . .
run over (t, xi) and i ∈ 1, . . . , d− 1 are boundary spatial
directions. We assume that the Ryu-Takayanagi formula
holds in the excited state, and the relative entropy be-
tween the reduced density matrix ρ1 of the excited state
and ρ0 of the ground state for the entangling disk D of
radius R is computable using the formulae discussed pre-
viously.
To apply a perturbative analysis in the bulk, we as-

sume that the radius R of the entangling domain is small
compared to the typical energy scale E ≈ 〈Tµν〉 1

d of the
state measured by the boundary stress tensor Tµν as in
ER ≪ 1.
In this limit, to order less than E2dR2d, we will show

that the relative entropy is expressed as the integral of
the local bulk energy density ε,

S(ρ1|ρ0) = 8π2GN

∫

V

R2 − (z2 + x2)

R
ε
√
gV , (10)

where GN is Newton’s constant, V is a d-dimensional
region on a constant-time slice bounded by the domain
D on the boundary and the Ryu-Takayanagi surface Σ
in the bulk, and

√
gV is the volume form in the bulk

(including the time direction). In [8], it was shown that
the first law S(ρ1|ρ0) = 0 in the linear approximation
is equivalent to the linearized Einstein equation. This
holds to order O(EdRd). Our result (10) improves the
approximation to the order less than E2dR2d by taking
into account the backreaction from the bulk stress-tensor.
Taking one derivative with respect to R, we find

∂RS(ρ1|ρ0) = 8π2GN

∫

V

(

1 +
z2 + x2

R2

)

ε
√
gV . (11)

Both positivity S ≥ 0 and monotonicity ∂RS ≥ 0 are uni-
versal properties of the relative entropy. We find that, in
the gravitational dual, they are translated to positivity
of the integrals of the bulk energy density ε weighted
by (R2 ± (z2 + x2))

√
gV (≥ 0 in V ). In particular, the

weak energy condition ε ≥ 0 guarantees these properties.
Though the weak energy condition is not necessarily sat-
isfied in AdS, it holds near the boundary of AdS, where
we are evaluating (10) and (11).
One more derivative relates the relative entropy to the

integral of the energy density on the boundary Σ of V ,

(

∂2
R +R−1∂R −R−2

)

S(ρ1|ρ0) = 16π2GN

∫

Σ

ε
√
gΣ , (12)

where
√
gΣ is the volume form on the Ryu-Takayanagi

surface. We will show that (12) can be inverted using the
Radon transform to express the bulk stress tensor point-
by-point in the near-AdS region using the entanglement
information of the CFT.
In the holographic setup, it is generally believed that

bulk locality emerges from the entanglement information
in the boundary CFT and that the relation between bulk
and boundary observables is non-local. In this paper, we
give an explicit example in which the bulk stress tensor
is expressed in terms of the boundary relative entropy,
showing how these general expectations are realized in a
specific setup.
∆Hmod and ∆SEE in holography.— We first review

how each quantity appearing in the relative entropy def-
inition (6) is mapped holographically. The modular
Hamiltonian Hmod for the reduced density matrix of a
CFT vacuum state on the entangling disk D of radius R,
centered at a point on the boundary, is expressed in terms
of the CFT stress tensor Ttt as in (8). It vanishes in the
CFT vacuum. We can also use (8) to evaluate the expec-
tation value of Hmod for any excited state in the same
Hilbert space, by computing the expectation value 〈Ttt〉
of the CFT stress tensor using holographic renormaliza-
tion (see e.g. [17–19]) or the shortcut of [8] to exploit
the fact that the relative entropy in the CFT vanishes in
the limit that the entangling domain shrinks to zero. As
long as the bulk matter fields contributing to 〈Tµν〉 are
dual to operators with scaling dimension δ > d/2, both
methods give

∆〈Hmod〉 = lim
z→0

dℓd−1
AdS

16GN

∫

D

dd−1x
R2 − |~x|2

R
z−dηijhij . (13)

In general, the right-hand side is modified by boundary
counter terms if it involves operators with δ ≤ d/2.
The holographic EE in Einstein gravity is given by

the Ryu-Takayanagi area formula (1). On a constant
time slice of pure AdS, the codimension-2 bulk extremal
surface Σ ending on a boundary sphere of radius R is the
half-sphere

z0(r) =
√

R2 − r2 . (14)
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The EE of the entangling disk of radius R in the CFT
vacuum is equal to the area functional of pure AdS eval-
uated on the surface (14). Suppose we perturb the bulk
metric away from pure AdS by hab which is parametri-
cally small. Because the original surface was extremal,
the leading variation in the holographic EE comes from
evaluating z0(r) (14) on the perturbed area functional.
One finds [6]

∆SEE =
ℓd−1
AdS

8GNR

∫

Σ

dd−1x(R2ηij − xixj)z−dhij . (15)

At order h2, one must account for corrections to the
shape of the Ryu-Takayanagi surface, see e.g. [4].
Linearized Einstein equations .— We now summarize

the derivation of the linearized gravitational equations of
motion from the entanglement first law (7), as presented
in [8]. The idea of [8] was to apply the Stokes theorem
to the bulk d-dimensional region V on a constant-time
slice bounded by the entangling disk D on the boundary
and the extremal surface Σ in the bulk. One can write
∆Hmod and ∆SEE as integrals overD and Σ respectively
of a local (d−1)-form χχχ that is a functional of the metric
fluctuation hab. Within Einstein gravity, [8, 20, 21] ex-
plicitly construct a χχχ[hab] that gives (13) and (15) when
integrated over D and Σ,

∫

D

χχχ = ∆〈Hmod〉,
∫

Σ

χχχ = ∆SEE . (16)

Moreover, the exterior derivative of this χχχ is given by

dχχχ = 2ξtEg
tt[h]g

tt√gV dz ∧ dxi1 · · · ∧ dxid−1 , (17)

with
√
gV the natural volume form on V induced from

the bulk spacetime metric, and

ξ =
π

R

{

[R2−z2−(t− t0)
2−x2]∂t−2(t− t0)[z∂z + xi∂i]

}

the Killing vector associated with Σ (14), which is a bi-
furcate Killing horizon in pure AdS. The linear gravita-
tional equations of motion in vacuum are expressed as
Eg

ab[h] = 0.
By the Stokes theorem, the relative entropy is

S(ρ1|ρ0) = ∆〈Hmod〉 −∆SEE =

∫

V

dχχχ . (18)

Considering (18) for every disk on a spatial slice at fixed
time t = 0, the entanglement first law S(ρ1|ρ0) = 0 can
be shown to be equivalent to Eg

tt[h] = 0. Considering it
for Lorentz-boosted frames gives vanishing of the other
boundary components, Eg

µν [h] = 0. Finally, an argument
appealing to the initial-value formulation gives vanishing
of the remaining components of the linearized Einstein
tensor that carry z indices.
To summarize, [8] proved the existence of a (d − 1)-

form χχχ as a functional of a metric fluctuation hab, for

which (16) holds off-shell and (17) holds with Eg
ab[h] the

linearized gravity equations of motion in vacuum.
By accounting for the 1/N correction to the Ryu-

Takayanagi formula [22], [9] showed that the entangle-
ment first law (7) implies the bulk linearized Einstein
equations sourced by the difference in the quantum ex-
pectation value of the bulk stress-energy tensor in the
quantum state of bulk fields relative to their vacuum
state, δ〈tab〉. Assuming that the source of the linearized
Einstein equation is a local QFT operator, one can then
argue that δ〈tab〉 in the derivation of [9] can be uplifted
to the bulk operator tab. In contrast, in this note, we
remain in the large N classical gravity limit, but assume
the linearized Einstein equations sourced by the classical
value of the bulk stress tensor.
Effects due to bulk stress tensor .— We now evaluate

the (d − 1)-form χχχ of [8] on the bulk metric fluctuation
hab of the dual to an arbitrary excited state of a CFT,
but in the interior of the Ryu-Takayanagi surface for the
entangling disk (14), whose radius satisfies ER ≪ 1. As
the deviation of the bulk metric in the enclosed volume
V is parametrically small, all results of the above dis-
cussion carry over and we can still use (18). However,
Eg

ab[h] in (17) should be evaluated on the hab which is
reconstructed from CFT data at non-linear level and is
not identically zero. Rather, the linearized Einstein ten-
sor couples to bulk matter in the form of the bulk stress
tensor tab. Our main result (10) can now be derived by
using

Eg
ab[hab] = 8πGN tab . (19)

The energy density ǫ appearing on the right-hand side of
(10) corresponds to the tt-component of the stress-energy
tensor, ε = −ttt.
For example, a massive scalar field in the bulk can con-

tribute to the metric perturbation hab as 〈O〉2z2∆, with
∆ the scaling dimension of the corresponding operator
on the boundary and 〈O〉 its expectation value, leading
to an O(〈O〉2R2∆) effect in (10). On the other hand,
corrections to the relative entropy by non-linear gravity
effects are of the order O(E2dR2d) or higher, which we ig-
nore. Thus, effects due to relevant operators with ∆ < d
are visible in our approximation.
By taking a derivative of (10) with respect to the ra-

dius R of the entangling domain, we find (11). Though
the derivative also generates an integral over the Ryu-
Takayanagi surface Σ, it vanishes because ξt vanishes on
the surface. Thus, we have shown that the positivity
and the monotonicity of the relative entropy are trans-
lated to positivity of the integrals of the energy density
ε weighted by (R2 ± (z2 + x2))

√
gV . In other words, we

derive the bulk energy conditions (10), (11) ≥ 0 from
entropy inequalities on the boundary that hold for any
CFT.
Inverting the bulk integral .— We found that

∂RS(ρ1|ρ0) is given by the integral of the energy
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density ε over the region V inside the Ryu-Takayanagi
surface. We can invert this relation to compute ε
point-by-point in the bulk by using the relative entropy
S(ρ1|ρ0).
To show this, note that

(

∂R +R−1
)

S(ρ1|ρ0) = 16π2GN

∫

V

ε
√
gV (20)

so differentiating again,

(

∂2
R +R−1∂R −R−2

)

S(ρ1|ρ0) = 16π2GN

∫

Σ

ε
√
gΣ (21)

where
√
gΣ is the natural volume form on the Ryu-

Takayanagi surface Σ induced from the bulk spacetime
metric. The right-hand side is still non-negative if we
assume the positivity of the bulk energy density. Thus,

(

∂2
R +R−1∂R −R−2

)

S(ρ1|ρ0) ≥ 0. (22)

Here the bulk geometry is the unperturbed AdS, and
its space-like section is the d-dimensional hyperbolic
space. The surface Σ is then totally geodesic. In this
case, the integral (21) is the Radon transform and its in-
verse is known. For a smooth function f on d-dimensional
hyperbolic space, the Radon transform Rf is an integral
of f over an n-dimensional geodesically complete sub-
manifold with n < d. This gives a function on the space
of geodesically complete submanifolds. The dual Radon
transformR∗Rf gives back a function on the original hy-
perbolic space in the following way: pick a point in the
hyperbolic space, consider all geodesically complete sub-
manifolds passing through the point, and integrate Rf
over such submanifolds. It was shown by Helgason [23]
that if d is odd, f is obtained by applying an appropriate
differential operator on R∗Rf . We are interested in the
case n = d− 1 for which

f =
[

(−4)(d−1)/2πd/2−1Γ(d/2)
]−1

Q(∆)R∗Rf , (23)

where Q(∆) is constructed from the Laplace-Beltrami
operator ∆ on the hyperbolic space as

Q(∆) = [∆+ 1 · (d− 2)] [∆+ 2 · (d− 3)] (24)

× · · · × [∆+ (d− 2) · 1] .

Applying this to (21), we find

ε =
[

(−4)(d+3)/2πd/2+1Γ(d/2)GN

]−1

× (25)

× Q(∆)R∗
(

∂2
R +R−1∂R −R−2

)

S(ρ1|ρ0) ,

when d is odd. There exists a similar formula for d
even [24].
Note that even if we are evaluating ε at (z, t, x) in

the near-AdS region, there are totally geodesic surfaces
that pass through this point and go deep into the bulk,
where the geometry can depart significantly from AdS.

However, contributions from these surfaces are negligible
when Ez ≪ 1, where E is the typical energy scale of the
CFT state. In this case, we can choose another z0 so that
z ≪ z0 and the geometry under z0 is still approximately
AdS. Since most totally geodesic surfaces passing through
(z, t, x) stay under z0, an integral over such surfaces is
well-approximated by the inverse Radon transform in the
hyperbolic space.
The energy density is the time-time component of the

stress-energy tensor tab. By computing the relative en-
tropy in other Lorentz frames, we can also derive com-
ponents tµν along the boundary. Finally, we can use
the conservation law, ∇atab = 0, to obtain the remaining
components, tzµ, tµν . Thus, we can use the entanglement
data on the boundary to reconstruct all components of
the bulk stress tensor.
Since the Radon transform preserves positivity, the

positivity of the energy density implies the positivity of
(

∂2
R +R−1∂R −R−2

)

S(ρ1|ρ0). Conversely, the positiv-
ity of the latter implies the positivity of its dual Radon
transform. It is interesting to note that Q(∆) in (25) is
a positive definite operator when acting on normalizable
functions on the hyperbolic space, though this does not
quite imply the positivity of the energy density.
Comparison with information theoretic analysis .— We

now discuss to what extent we can recover the monotonic-
ity and convexity (12) of the relative entropy from the
following general property of the relative entropy. Con-
sider a density matrix ρ (with ρ∗ = ρ, ρ ≥ 0, tr(ρ) = 1),
and two increments h, ℓ, given by matrices with h = h∗,
ℓ = ℓ∗, tr(h) = tr(ℓ) = 0. If the matrices ρ, h, ℓ satisfy
[ρ, h] = [ρ, ℓ] = 0, the relative entropy satisfies

S(ρ+ h|ρ+ ℓ) ∼ 〈(h− ℓ),
1

2
ρ−1(h− ℓ)〉, (26)

where the right-hand-side is the Fisher metric, with the
Hilbert–Schmidt inner product 〈a, b〉 = tr(a∗b). Thus,
the second order term is non-negative definite, and the
quadratic form only vanishes for h = ℓ.
The entanglement density matrices ρ(R) and ρ0(R)

discussed in this paper have additional properties for
small R. Since Hmod is given by the integral (8), the
Taylor expansion of Ttt around ~x = ~x0 gives Hmod =
h0R

d + · · · . Therefore, the density matrix for the vac-
uum state can be expanded as

ρ0(R) =
1

N − h′
0R

d + · · · , (27)

where tr 1 = N and h′
0 = h0 − 1

N
tr h0 so that tr h′

0 = 0.
For ρ(R), we postulate

ρ(R) =
1

N +
∑

i

ℓiR
δi + hRd + · · · , (28)

so that the small R expansion of the relative entropy
S =

∑

iR
2δisi+ · · · expected from the holographic com-

putation above is reproduced. Here tr ℓi = 0 and δi’s are
scaling dimensions of relevant operators, δi < d.
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The right-hand-side of (26) becomes

∑

ij

N
2

〈ℓi, ℓj〉Rδi+δj . (29)

Thus, the leading order term of S(ρ1|ρ0) is

S(ρ1|ρ0) ∼
N
2
|ℓ1|2R2δ1 , (30)

where δ1 = mini{δi}. Its first and second derivatives in
R have leading term

∂RS(ρ1|ρ0) ∼ N δ1|ℓ1|2R2δ1−1 , (31)
(

∂2
R+R−1∂R−R−2

)

S(ρ1|ρ0) ∼
N
2
|ℓ1|2(4δ21−1)R2δ1−2.

The first is manifestly positive, and the second is non-
negative provided δ1 ≥ 1/2, which is satisfied by our
assumption δ1 > d/2 for d ≥ 2.

Our holographic analysis shows that the positivity
and convexity of the relative entropy hold for sublead-
ing terms up to O(R2d). On the other hand, correc-
tions to (30) may involve not only quadratic terms with
δi + δj < 2d, but also cubic terms with δi + δj + δk < 2d,
etc. It appears that additional assumptions on the den-
sity matrices are required to explain the convexity from
this point of view.

Acknowledgments .— We thank N. Bao, D. Gaiotto,
D. Harlow, T. Hartman, P. Hayden, N. Hunter-Jones,
C. Keller, D. Kutasov, H. Liu, Y. Nakayama, S. Pufu,
P. Sulkowski, T. Takayanagi, M. Van Raamsdonk and
E. Witten for useful discussion. JL acknowledges sup-
port from the Sidney Bloomenthal fellowship at the Uni-
versity of Chicago. MM is currently supported by NSF
grants PHY-1205440, DMS-1201512, and DMS-1007207.
HO and BS are supported in part by the Walter Burke
Institute for Theoretical Physics at Caltech, by U.S.
DOE grant DE-SC0011632, and by a Simons Investigator
award. The work of HO is also supported in part by the
WPI Initiative of MEXT of Japan, and JSPS Grant-in-
Aid for Scientific Research C-26400240. He also thanks
the hospitality of the Aspen Center for Physics and the
National Science Foundation, which supports the Center
under Grant No. PHY-1066293. BS is supported in part
by a Dominic Orr Graduate Fellowship. JL, HO and BS
would like to thank the Institute for Advanced Study,
Princeton University, and the Simons Center for Geom-
etry and Physics for hospitality. JL also thanks Caltech
for hospitality.

[1] S. Ryu and T. Takayanagi,
Phys.Rev.Lett. 96, 181602 (2006),
arXiv:hep-th/0603001 [hep-th].

[2] S. Ryu and T. Takayanagi, JHEP 0608, 045 (2006),
arXiv:hep-th/0605073 [hep-th].

[3] M. Nozaki, T. Numasawa, A. Prudenziati, and
T. Takayanagi, Phys.Rev. D88, 026012 (2013),
arXiv:1304.7100 [hep-th].

[4] D. D. Blanco, H. Casini, L.-Y. Hung, and R. C. Myers,
JHEP 1308, 060 (2013), arXiv:1305.3182 [hep-th].

[5] G. Wong, I. Klich, L. A. P. Zayas, and D. Va-
man, Journal of High Energy Physics 12, 20 (2013),
arXiv:1305.3291 [hep-th].

[6] N. Lashkari, M. B. McDermott, and M. Van Raamsdonk,
JHEP 1404, 195 (2014), arXiv:1308.3716 [hep-th].

[7] J. Bhattacharya and T. Takayanagi,
JHEP 1310, 219 (2013), arXiv:1308.3792 [hep-th].

[8] T. Faulkner, M. Guica, T. Hartman, R. C. My-
ers, and M. Van Raamsdonk, JHEP 1403, 051 (2014),
arXiv:1312.7856 [hep-th].

[9] B. Swingle and M. Van Raamsdonk, (2014),
arXiv:1405.2933 [hep-th].

[10] H. Casini, M. Huerta, and R. C. Myers,
JHEP 1105, 036 (2011), arXiv:1102.0440 [hep-th].

[11] J. Bhattacharya, M. Nozaki, T. Takayanagi, and
T. Ugajin, Phys.Rev.Lett. 110, 091602 (2013),
arXiv:1212.1164.

[12] S. Banerjee, A. Bhattacharyya, A. Kaviraj,
K. Sen, and A. Sinha, JHEP 1405, 029 (2014),
arXiv:1401.5089 [hep-th].

[13] S. Banerjee, A. Kaviraj, and A. Sinha, (2014),
arXiv:1405.3743 [hep-th].

[14] V. Balasubramanian, B. D. Chowdhury, B. Czech, J. de
Boer, and M. P. Heller, Phys. Rev. D 89, 086004 (2014),
arXiv:1310.4204 [hep-th].

[15] V. E. Hubeny, Journal of High Energy Physics 9, 156 (2014),
arXiv:1406.4611 [hep-th].

[16] B. Czech and L. Lamprou, ArXiv e-prints (2014),
arXiv:1409.4473 [hep-th].

[17] V. Balasubramanian and P. Kraus,
Commun.Math.Phys. 208, 413 (1999),
arXiv:hep-th/9902121 [hep-th].

[18] S. de Haro, S. N. Solodukhin, and K. Skenderis, Com-
mun.Math.Phys. 217, 595 (2001).

[19] K. Skenderis, Class.Quant.Grav. 19, 5849 (2002),
arXiv:hep-th/0209067 [hep-th].

[20] R. M. Wald, Phys. Rev. D 48, 3427 (1993),
gr-qc/9307038.

[21] V. Iyer and R. M. Wald, Phys.Rev. D50, 846 (1994),
arXiv:gr-qc/9403028 [gr-qc].

[22] T. Faulkner, A. Lewkowycz, and J. Maldacena,
JHEP 1311, 074 (2013), arXiv:1307.2892.

[23] S. Helgason, Acta Math. 102, 239 (1959).
[24] B. Rubin, Adv. Math 170, 206 (2002).

http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://dx.doi.org/10.1103/PhysRevD.88.026012
http://arxiv.org/abs/1304.7100
http://dx.doi.org/10.1007/JHEP08(2013)060
http://arxiv.org/abs/1305.3182
http://dx.doi.org/10.1007/JHEP12(2013)020
http://arxiv.org/abs/1305.3291
http://dx.doi.org/10.1007/JHEP04(2014)195
http://arxiv.org/abs/1308.3716
http://dx.doi.org/10.1007/JHEP10(2013)219
http://arxiv.org/abs/1308.3792
http://dx.doi.org/ 10.1007/JHEP03(2014)051
http://arxiv.org/abs/1312.7856
http://arxiv.org/abs/1405.2933
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://dx.doi.org/10.1103/PhysRevLett.110.091602
http://arxiv.org/abs/1212.1164
http://dx.doi.org/10.1007/JHEP05(2014)029
http://arxiv.org/abs/1401.5089
http://arxiv.org/abs/1405.3743
http://dx.doi.org/10.1103/PhysRevD.89.086004
http://arxiv.org/abs/1310.4204
http://dx.doi.org/10.1007/JHEP09(2014)156
http://arxiv.org/abs/1406.4611
http://arxiv.org/abs/1409.4473
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/hep-th/0209067
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://dx.doi.org/10.1007/JHEP11(2013)074
http://arxiv.org/abs/1307.2892

