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We study the Hubbard model on the frustrated honeycomb lattice with nearest-neighbor t1 and
second nearest-neighbor hopping t2, which is isomorphic to the bilayer triangle lattice, using the
SU(2)-invariant slave boson theory. We show that the Coulomb interaction U induces antiferro-
magnetic (AF) chiral spin-density wave (χ-SDW) order in a wide range of κ = t2/t1 where both
the two-sublattice AF order at small κ and the decoupled three-sublattice 120◦ order at large κ are
strongly frustrated, leading to three distinct phases with different anomalous Hall responses. We
find a continuous transition from a χ-SDW semimetal with anomalous Hall effect to a topological
chiral Chern insulator exhibiting quantum anomalous Hall effect, followed by a discontinuous transi-
tion to a χ-SDW insulator with zero total Chern number but anomalous ac Hall effect. The χ-SDW
is likely a generic phase of strongly correlated and highly frustrated hexagonal lattice electrons.

PACS numbers: 71.10.Fd, 71.27.+a, 75.10.-b, 73.43.-f

A spin density wave (SDW) refers to the formation of
nonzero spin density moments in itinerant electron sys-
tems [1]. The spin texture depends on the nature of
the electronic interaction, the lattice geometry and the
Fermi surface (FS) structure. It has the general form:
~S(~r) =

∑

α
~Sα cos( ~Qα · ~r + θα) where α = x, y, z and

θα is a relative phase. The SDW ordering wavevectors
~Qα, when commensurate with the lattice, determine the
magnetic unit cell containing a number of sublattice sites.
Besides the usual linearly-polarized (collinear) and spiral
(coplanar) SDW phases, the textured quantum electronic
phase with noncoplanar, chiral SDW (χ-SDW) order has
attracted great interest recently for its ability to sustain
a spin chirality χ = ~Sℓ1 · (~Sℓ2 × ~Sℓ3), where ℓi labels
the sublattice sites in the magnetic cell, that breaks both
parity and time-reversal symmetry. Electrons accumu-
late Berry phase from the spontaneous internal magnetic
field, leading to the anomalous Hall effect (AHE) [2–6].
A topological phase with quantum anomalous Hall ef-
fect (QAHE) can arise in a χ-SDW insulator, where the
electron bands acquire nonzero Chern numbers [4].

The spin-chirality mechanism accounts for the AHE
in many ferromagnetic materials such as the mangan-
ites and the pyrochlores [7]. In this paper, we focus on
the antiferromagnetic (AF) χ-SDW metals and insula-

tors with
∑

ℓ
~Sℓ = 0 in materials and models with strong

electron correlation and magnetic frustration. They have
been discovered in charge transfer insulators NiS2 [8–
11], metallic γ-FeMn alloys [12–15] and related materi-
als where the magnetic moments reside on the frustrated
face-centered-cubic lattice. Neutron scattering observed
noncoplanar AF order with 4-sublattices and 3-ordering
wavevectors. A unique character of this triple-Q χ-SDW
phase is that the ordered moments on the four sublattices
form a tetrahedron in spin space. On the theoretical side,

it has been shown that frustrated Heisenberg two-spin ex-
change interactions are insufficient to produce the AF χ-
SDW order; additional 4-spin exchange interactions are
necessary for such a noncoplanar SDW to emerge from
the many degenerate magnetic states [11, 16–18]. In ad-
dition, weak-coupling approaches such as nesting based
models [19] and band structure (LDA) and LDA+U cal-
culations [11, 20, 21] have been performed to study the
complex magnetic order in these materials. While a mi-
croscopic theory for the χ-SDW order is currently lack-
ing, it is believed that both strong correlation and geo-
metric frustration play vital roles in its origin.

Recently, it has been shown that the nearest neigh-
bor (NN) Hubbard model on the triangular and the hon-
eycomb lattices has a FS instability at 3/4 zone-filling,
where the FS touches the van Hove (vH) singularity [22–
24]. In the magnetic channel, this instability leads to
the same triple-Q χ-SDW order with 4-sublattice spins
forming a tetrahedron. Several theoretical studies such
as the renormalization group (RG) [25], functional RG
[26, 27], and density matrix RG [28] have been performed
to study the competition of the χ-SDW state with other
forms of FS instabilities such as unconventional super-
conductivity. These findings raise the exciting possibility
of realizing the AHE and the topological QAHE in two-

dimensional (2D) or layered quasi-2D materials such as
graphene [29, 30], sodium cobaltates [31–33], and frus-
trated antiferromagnets [34, 35], and motivate the study
of topological AF χ-SDW ground states in 2D models
with electronic correlation and geometric frustration.

We study in this work the frustrated honeycomb lattice
Hubbard model with NN t1 and second NN hopping t2,
and on-site Coulomb repulsion U shown in Fig. 1a. This
lattice structure is isomorphic to the center-stacked, bi-
layer triangle lattice with intralayer hopping t2 and inter-
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FIG. 1: (a) The isomorphic t1-t2 honeycomb lattice and bi-
layer triangle lattice. (b) and (c) Spin configurations of the
4-site, triple-Q, tetrahedron AF χ-SDW order.

layer hopping t1 as indicated by the dashed blue and red
lines in Fig. 1a. Materials having such lattice structures
include, in addition to graphene and bilayer cobaltates,
quasi-2D bilayer triangular lattice chalcogenides [36] and
layered honeycomb lattice AF compounds [35, 37–39].
We study the model at half filling in view of the bet-
ter control over stoichiometric materials, and address the
nature of the magnetic ground states at large enough U
that straddle between the two-sublattice collinear AF or-
der at t2/t1 ≪ 1 and the two decoupled 120◦ coplanar
order at t1/t2 ≪ 1. To study both strong correlation and
noncollinear magnetic order, we employ the SU(2) spin
rotation invariant slave boson theory [40–42], which has
been generalized to treat magnetic superstructures [43].
This approach describes the magnetism on the square lat-
tice that shows remarkable agreement with QMC simula-
tions [44]. Recently, the semimetal to AF insulator tran-
sition on the honeycomb lattice was studied using this
approach [45] and the obtained results agree well with the
QMC work [46]. On the frustrated triangular lattice, the
SU(2)-invariant slave boson theory predicts a discontinu-
ous transition to the noncollinear 120◦ AF ordered phase
at a critical U [43] that is also in good agreement with
variational Monte Carlo [47] and numerical RG calcula-
tions [48]. Fig. 2 shows our obtained phase diagram on
the axes of frustration t2/t1 and correlation U/W , where
W is the bandwidth. We find that in a wide range of t2/t1
where the AF frustration is most pronounced, the ground
state for U > 0.68W is precisely the triple-Q, noncopla-
nar χ SDW phase shown in Figs. 1b and 1c with ordering
wavevectors ~Q1,2 = 1

2
~b1,2 and ~Q3 = 1

2 (
~b1+~b2), where ~b1,2

are the reciprocal lattice vectors of ~a1,2 in Fig. 1a. Fur-
thermore, Fig. 2 shows several distinct and novel SDW
phases protruding into the paramagnetic (PM) phase at
smaller U/W , forming the triangle-shaped phase region
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FIG. 2: Phase diagram: Shaded regions represent distinct χ-
SDW phases: Semi-metal with AHE, C = 2 Chern insulator
with QAHE, and C = 0 Chern insulator with ac AHE. All
phase boundaries are lines of discontinuous transitions except
for the continuous transition across the blue line.

around t∗2 = 0.85t1. Increasing the Hubbard U drives
a sequence of phase transitions: from the PM metal to
a single-Q striped SDW, then to a double-Q coplanar
spiral SDW, followed by the onset of triple-Q χ-SDW
order into a semimetal with AHE, then to a topological
χ-SDW exhibiting QAHE with the total occupied-band
Chern number C = 2; and eventually via a discontinuous
topological transition to a χ-SDW insulator with C = 0
and spontaneous ac AHE.
The Hubbard model on the lattice shown in Fig. 1a is

H =
∑

〈ij〉
t1c

†
iσcjσ+

∑

〈〈ij〉〉
t2c

†
iσcjσ+h.c.+U

∑

i

ni↑ni↓, (1)

where t1 and t2 describe the inter-sublattice (inter-layer)
and intra-sublattice (intralayer) hopping on the hon-
eycomb (bilayer triangle) lattice. Labeling the two-

sublattice (bilayer) as A and B and denoting C†
kσ =

(c†kσ,A, c
†
kσ,B), the noninteracting part in Eq. (1) can be

written as [49] H0 = C†
kσHkCkσ , where

Hk =

(

t2∆k t1εk
t1ε

∗
k t2∆k

)

, εk = 1+ e−i~k·~a1 + e−i~k·~a2 , (2)

and ∆k = 2[cos(~k · ~a1) + cos(~k · ~a2) + cos(~k · (~a1 − ~a2))].
Diagonalizing Hk gives two noninteracting bands E±

k =
t2∆k ± t1

√
3 + ∆k. For t2 < t1/3, the two subbands

cross at the Dirac points (K and K ′) that pin the Fermi
level at half-filling. When t2 > t1/3, the subbands
overlap, giving rise to three FS sections: a hole pocket
around zone center (Γ) and two electron pockets around
K and K ′ as shown in Fig. 3(a). Increasing t2/t1 fur-
ther, the FS pockets grow in size and the Fermi level
rises toward the vH singularity at M point with energy
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FIG. 3: Band dispersion (top panel, in unit of t1) and FS
(bottom panel) at t2/t1 = 0.5 (a); t2/t1 = 0.85 (b); and
t2/t1 = 1.0 (c). Red hexagons in the bottom panel mark the
original zone boundary, on which lie six vH points connected
by the wave vectors ~Q1,2,3 shown in (a). The outer FS crosses
the vH points in (b) where the blue hexagon indicates the 2×2
reduced zone boundary that intersects the inner hole-FS.

E+
M = t1 − 2t2. Fig. 3(b) shows that at half-filling, the

Fermi level touches the vH points at t∗2 ≃ 0.85t1 where
the electron pockets merge and the hole pocket matches
the 2 × 2 reduced zone boundary. For t2 > t∗2, the
electron pockets coalesce to produce the large hexago-
nal electron FS (Fig. 3c), while the central hole pocket
grows continuously. A weak-coupling theory of itiner-
ant electrons would thus predict an SDW instability at
t2/t1 ≃ 0.85, associated with both the hexagonal elec-
tron FS due to the vH singularity and the hole FS due
to umklapp scattering, involving some or all of the three
relevant wavevectors ~Q1,2,3 shown in Fig. 3(a).
To treat Coulomb interaction nonperturbatively and

study noncollinear spin order, we represent the local
Hilbert space by a spin-1/2 fermion fσ and six bosons e,
d, and pµ (µ = 0, 1, 2, 3) for empty, doubly-occupied, and
singly occupied sites respectively [40–43]: |0〉 = e†|vac〉,
|↑↓〉 = d†f †

↓f
†
↑ |vac〉, and |σ〉 = 1√

2
f †
σ′p†µτ

µ
σ′σ|vac〉 where

τ1,2,3 and τ0 are Pauli and identity matrices. The com-
pleteness of the Hilbert space, and the equivalence be-
tween boson and fermion representations of the particle
and spin density impose three local constraints:

Oi = e†iei + p†i0pi0 + ~p†i · ~pi + d†idi − 1 = 0,

O0
i = p†i0pi0 + ~p†i · ~pi + d†idi − f †

iσfiσ = 0,

Oα
i = p†i0piα + p†iαpi0 + i(~p†i × ~pi)α − f †

iστ
α
σσ′fiσ′ = 0.

The Hubbard Hamiltonian thus becomes,

H =
∑

〈ij〉
t1ψ

†
i g

†
i gjψj +

∑

〈〈ij〉〉
t2ψ

†
i g

†
i gjψj + U

∑

i

d†idi

− µ0

∑

i

f †
iσfiσ +

∑

i

λiOi +
∑

i

λiµO
µ
i , (3)
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FIG. 4: Evolution of spin chirality and anomalous Hall re-
sponse as a function of U/t1 at t2/t1 = 0.85. Calculated dc
AHE response corresponds to green line, while C = 2 QAHE
is marked by superposed red line. Hysteretic spin chirality
(blue line) is shown at transition between C = 2 and C = 0
Chern insulators. Inset: ac AHE response at U/t1 = 8.0.

where the fermion spinor ψ†
i = (f †

i↑, f
†
i↓) and λi and λµi

are Lagrange multipliers. The hopping renormalization
factors gi, gj are 2 × 2 matrices involving the boson
operators [41, 42]. We found that due to the particle-
hole symmetry at half-filling, gi simplifies considerably
when all bosons are condensed and gi = gi0τ0 where gi0
is the corresponding hopping renormalization of Kotliar
and Ruckenstein [40]. We solve the self-consistency equa-
tions that minimize Eq. (3) for general spin and charge
configurations containing up to 8-sites per unit cell. To
determine the ground state properties accurately, we use
the supercell construction [43] and discretize the reduced
zone with 600× 600 k-points in all calculations such that
uncertainties are within the symbol sizes in Fig. 2.
The obtained results show that for t2/t1 < 0.55, the

bipartite collinear AF insulator remains the ground state
as in the unfrustrated case at t2 = 0 and U/W ≥ 0.57. In
the opposite limit, when t2/t1 > 1.3, the 120◦ coplanar
AF state becomes the ground state, which is analytically
connected to the decoupled 120◦ states in the limit t1 → 0
and U/W ≥ 1.42. Remarkably, we find that in the wide
region 0.55 < t2/t1 < 1.3 the effects of frustration and vH
singularity give rise to three new SDW phases as shown
in the phase diagram (Fig. 2). They are described by

1Q Stripe, ~S(~ri) = m(±ei ~Q1·~ri , 0, 0),

2Q Spiral, ~S(~ri) =
m√
2
(±ei ~Q1·~ri ,±ei ~Q2·~ri , 0), (4)

3Q χ−SDW, ~S(~ri) =
m√
3
(±ei ~Q1·~ri ,±ei ~Q2·~ri , ei

~Q3·~ri),

with ± for i ∈ A,B respectively and ~Q1,2,3 depicted
in Fig. 3a. Let us fix the degree of frustration at
t2/t1 = 0.85 and increase the correlation strength U/W .
Fig. 2 shows that the PM metal undergoes two sequen-
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tial discontinuous transitions to the 1Q-strip and then
the 2Q-spiral phases. These phases are metallic due to
the partial gapping of the FS and break the C3 symmetry.
Increasing U/W further leads to the onset of the triple-

Q χ-SDW order through a discontinuous transition. We
find that a non-zero spin chirality χ alone is insufficient
to specify the ground state and there are three distinct
χ-SDW phases characterizable by their intrinsic Hall re-
sponses [2]. The latter can be calculated using the Kubo
formula [6, 50–52],

σxy(ω) =
e2

~

∑

k,n6=m

[f(εkn)− f(εkm)] Im vnmx vmn
y

(εkn − εkm)2 − (ω + iδ)2
, (5)

where εkn is the dispersion of the nth band |nk〉 in the
self-consistent solution of Eq. (3) as shown in Fig. 5; f(x)
is the Fermi function; and vmn

x(y) = 〈km|v̂x(y)|kn〉 is the
matrix element of the velocity operator. In Fig. 4, we
plot the calculated anomalous Hall response and the spin
chirality χ as a function of U/t1. As the system enters
the χ-SDW phase, the triple-Q order parameter gaps out
the vH points of the outer electron FS in Fig. 3b while
the inner hole FS is truncated into small electron and
hole pockets by the 2 × 2 reduced zone boundary due
to umklapp scattering. This χ-SDW-I semimetal phase
exhibits (unquantized) dc AHE as shown in Fig. 4. As
the ordered moment grows with increasing U , the FS
pockets shrink and disappear when the system makes a
continuous transition into the insulating χ-SDW-II phase
(Fig. 2) characterized by a QAHE with σxy = Ce2/h and
C = 2 as can be seen in Fig. 4. This topological phase is
a Chern insulator (CI), since all bands acquire a nonzero
Chern number [53] and the total Chern number of all
occupied bands is C = 2 as displayed in Fig. 5a.
This topological phase should remain stable unless the

insulating single-particle gap closes, such as when cross-
ing the sample edges where gapless surface states must
emerge. Quite surprisingly, Fig. 4 shows that the σxy-
plateau collapses above U = 7.2t1 where a third χ-SDW-
III insulating phase sets in and remains the ground state
in the large-U region of the phase diagram, which was ex-
plicitly verified up to U/W = 8. In this phase, each band
still carries a nonzero Chern number, as shown in Fig. 5b,
but the total occupied band Chern number C = 0 leading
to σxy = 0. We find that the CIs with C = 2 and C = 0
are separated by a discontinuous topological transition
as detailed in Fig. 4, which is accompanied a hysteretic
jump in the spin chirality χ without symmetry change
in the order parameter or gap-closing. Although the dc
Hall response is zero in the C = 0 CI phase, the Chern
bands shown in Fig. 5b give rise to an intrinsic AHE in
the ac Hall response σxy(ω), related to nontrivial optical
dichroism through interband transitions as shown in the
inset of Fig. 4.
To summarize, we have shown that the Hubbard model

on frustrated honeycomb and bilayer triangular lattices
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exhibits the triple-Q, χ-SDW order over a wide region
where frustration is strongest. Our findings provide in-
sights into the different roles played by itinerancy, frus-
tration, and correlation. While the existence of the vH
singularity and umklapp scattering near t2/t1 = 0.85 pro-
duces the intervening 1Q-stripe and 2Q-spiral phases,
the emergence of the χ-SDW order at intermediate U
is a consequence of AF frustration [54]. Indeed, Fig. 2
shows that direct transitions from the PM phase to the
χ-SDW insulator take place generically away from the
special band structure point, and the phase boundary of
the C = 0 χ-SDW insulator is essentially insensitive to
band parameters in this region. An important corollary
is that the magnetic phases of the Hubbard model are
not necessarily connected adiabatically to those of the
Heisenberg model with only quadratic spin exchange in-
teractions. Recent studies of the J1-J2 Heisenberg model
on the honeycomb lattice have not found the χ-SDW
phase [55–59]. Indeed, it is straightforward to verify us-
ing Eq. (4) that the 3Q χ-SDW, 2Q-spiral, and 1Q-stripe
phases are all degenerate in the J1-J2 model. Additional
four-site, four-spin ring exchange interaction of the form
K2[(~S1 · ~S2)(~S3 · ~S4)+(~S1 · ~S4)(~S2 · ~S3)− (~S1 · ~S3)(~S2 · ~S4)]
can serve to break this degeneracy and select the χ-SDW
as the ground state for large U . This is consistent with
the studies of the 3D χ-SDW insulator NiS2 using spin
models [11, 16–18]. For the intermediate U studied here,
we found no signatures of bond ordered phases and veri-
fied that the χ-SDW is stable against the dimerized state
in the J1-J2 model [57]. The competition between var-
ious valence-bond order and the χ-SDW can be studied
using the J1-J2-K2 model. It is hoped that our findings
will further stimulate the search for topological χ-SDW
phases in 2D or layered hexagonal materials with both
strong correlation and magnetic frustration.
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