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Cavitation bubbles induce impulsive forces on surrounding substrates, particles, or surfaces. Even
though cavitation is a traditional topic in fluid mechanics, current understanding and studies do not
capture the effect of cavitation on suspended objects in fluids. In the present work, the dynamics of
a spherical particle due to a cavitation bubble is experimentally characterized and compared with
an analytical model. Three phases are observed: the growth of the bubble where the particle is
pushed away, its collapse where the particle approaches the bubble, and a longer timescale post-
collapse where the particle continues to move toward the collapsed bubble. The particle motion in
the longer timescale presumably results from the asymmetric cavitation evolution at an earlier time.
Our theory considering the asymmetric bubble dynamics shows that the particle velocity strongly
depends on the distance from the bubble as an inverse-4th-power law, which is in good agreement
with our experimentation. This study sheds light on how small free particles respond to cavitation
bubbles in fluids.

PACS numbers: 47.55.dp, 47.55.N-, 47.55.dd

Cavitation is the physical process of bubble formation
in a liquid medium by either decreasing pressure or in-
creasing temperature. These cavitation bubbles are well
known for causing undesirable damage in hydrodynamic
systems [1] and offer advantages in many other systems;
e.g. in sonocatalytic reactors [2], in non-invasive frac-
turing tools of kidney stones [3, 4], and in drug delivery
methods [5]. They are also present in natural systems:
inside the human body [6], used as a hunting technique
of some crustaceans [7, 8], in plants [9], or in everyday
life [10].

During the cavitation mechanism, a vapor bubble is
nucleated and is rapidly turned back to its equilibrium
liquid phase [11]. The detailed dynamics of spheri-
cal bubbles far from any boundaries, described by the
Rayleigh-Plesset equation, has been extensively studied
[12, 13]. Most experimental configurations of interest
are a cavitated bubble occurring near either solid or de-
formable boundaries [14–18] and a stationary bubble near
moving particles [19, 20]. For biomedical and engineering
applications, the effect of ultrasonic cavitation on defor-
mations or fracture of large bio-tissue or bio-agglomerate
[3, 4, 21, 22] and on collisions of micrometric particles
[23] have been studied. However, cavitation in the vicin-
ity of freely moving objects has received less attention,
and little is known about how a particle responds to a
cavitation bubble of similar size.

In this present work, we propose an experimental study
of the interaction between a cavitation bubble and a
freely moving particle whose radius is smaller than the
maximum bubble radius. We identify the response of
the particle to the bubble dynamics, and also develop
an analytical model for the particle behavior after the
disappearance of the bubble that is compared with our
experimental data.

There are two ways to initiate cavitation in water ac-
cording to its phase diagram [24]: by lowering the pres-
sure or by raising the temperature. In practice, pressure-
based mechanisms are widely used due to their relatively
simple setups [25], however with these methods it is dif-
ficult to precisely control the cavitation bubble’s loca-
tion. As an alternative method, superheated cavitation
bubbles are generated by laser pulses [26] or by electric
sparks [27, 28], which is more convenient to control and
study a single bubble and its effects [29–31]. We have
chosen the spark-induced approach in this study. The
electric spark is generated by the discharge of capacitors
(the equivalent capacitance of the circuit is 23.5 mF) that
can be charged up to 50 V. Two tinned copper electrodes
linked to the circuit, approximately 0.17 mm in diameter,
are touched together at the desired location of the nucle-
ation. A trigger initiates the discharge of the capacitors,
creating a short-circuit and thereby a spark that nucle-
ates a cavitation bubble. Experiments are performed in a
plexiglas tank filled with filtered water at room temper-
ature. The bubble is nucleated far enough from the tank
walls and from the air-water surface to neglect the effects
of these boundaries. Three different voltages are used to
charge the capacitors: 40, 45 and 50 V. Below 40 V no
significant movement of the particles has been observed.
This nucleates bubbles with respective maximal radii of
Rb,max = 2.6±0.1, 3.3±0.2, 3.9±0.2 mm, growing times
tg = 0.45±0.03, 0.58±0.06, 0.68±0.08 ms, and collaps-
ing times tc = 0.31± 0.04, 0.42± 0.07, 0.51± 0.08 ms.

The cavitation is initiated near a single solid spher-
ical particle attached to a thin steel rod whose radius
and mass are Rrod = 0.2 mm and mrod = 0.07 g, that
hangs under gravity like a pendulum with a free rota-
tion. Hence, the bending of the rod is not considered
and has not been observed in our experiments (N=241).
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FIG. 1: Image sequences of a glass particle (left), 1.6 mm in
radius, and a cavitation bubble (right). A 50 V spark (a) nu-
cleates a cavitation bubble that begins to expand, (b) pushing
the particle away. The bubble then reaches its maximum size
(c) and begins to attenuate in volume. As it shrinks, it is no
longer able to maintain its spherical shape (d) and will col-
lapse in on itself to its nucleation point (e). The collapse of
the cavitation bubble sucks the particle toward the nucleation
site (f). In all of the images, the time represents the time since
the electric spark. For details, see the supplementary video.

The nucleation point and the center of the particle are
positioned on a horizontal line, making the motion of the
latter one-dimensional: considering the small horizontal
displacements analyzed, less than 1 mm, and the length
of the rod, lrod ∼ 65 mm, it is assumed that vertical dis-
placements are negligible. The motion of the particle is
hence only characterized by the distance from its center
to the nucleation point, designated by Xp(t). Six differ-
ent particles are used: three glass particles, whose radii
Rp are 2.4, 2.0 and 1.6 mm; and three other 1.6 mm par-
ticles made of aluminium, brass and steel. Their masses
mp are respectively 0.14, 0.08, 0.04, 0.05, 0.14 and 0.13 g.

The motion of the particle and the evolution of the
bubble are recorded with a Photron FASTCAM Mini
high-speed camera, with 12,500 to 64,000 frames/s de-
pending of the need of spatial and temporal resolution.
The particle position is tracked using MATLAB codes.
A sample image sequence is shown in Fig. 1. Dynamics
of the bubble and the particle can be divided into the
following three phases, illustrated by Fig. 2. (i) Just
after the electric spark, the cavitation bubble grows and
pushes the particle away (Ẋp > 0) until it reaches its
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FIG. 2: (a) Evolution of the bubble radius generated by 40, 45
and 50 V sparks; measured without the presence of a particle.
Due to the initial spark, the bubble radius is unmeasurable at
the very beginning of the growth. (b) Displacement of a brass
particle with a radius of 1.6 mm due to cavitation, showing
the strong dependence on the initial distance and the bubble
dynamics. The measured final velocity is given for each case.

maximal size. (ii) The bubble then starts to collapse in
on itself, sucking the particle toward its center (Ẋp < 0).
The bubble evolution is qualitatively similar to what has
already been reported for a cavitation bubble near a fixed
rigid convex surface [32]: it grows almost spherically,
but takes a characteristic shape during the collapse as
seen Fig. 1(d). (iii) Once the bubble has collapsed (see
Fig. 1(e)), it rebounds and collapses again several times.
The rebounds become progressively smaller, and then the
bubble finally disappears. During this time, the particle
continues to move toward the center of the bubble as
illustrated in Fig. 1(f).

We studied the particle during the last phase of suction
in which, as shown Fig. 2(b), it has a constant speed, de-
noted by Ẋp,f , for a long time compared to the timescale
of the bubble dynamics. An analytical theory has been
developed to evaluate the effect of the particle proper-
ties, the initial distance Xp,i from the nucleation point,
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FIG. 3: Normalized bubble radius vs normalized grow-
ing/collapsing times. Circles correspond to the growing phase
of the bubble, triangles to the collapsing phase. The inset
shows the growth time and the collapse time for the different
voltages.

and the bubble dynamics. The evolution of the bubble
creates a flow in which the fluid velocity u is found from
the incompressibility of the fluid [33]: using spherical co-
ordinates centered at the nucleation site, the velocity is
radial: u = uer with

u (r, t) =

(

Rb (t)

r

)2

Ṙb (t) , (1)

where Rb is the bubble radius. An important geometric
parameter for bubble dynamics near boundaries is the
stand-off parameter γ = (Xp,i −Rp) /Rb,max, the ratio of
the initial distance between the solid boundary and the
bubble center to the maximum bubble radius [34]. In our
experiments, we only consider γ > 1. The drag force on
the particle due to the flow is F drag = Fdrag(t) er with

Fdrag (t) = sign (u)
1

2
CDρwA [u (Xp (t) , t)]

2 , (2)

where A = πR2
p is the projected area of the particle, ρw is

the density of water and CD is the drag coefficient taken
as a constant.
The particle and the rod form a pendulum sys-

tem that follows the angular momentum equation
Iθ̈ = −lrodFdrag, where I is the moment of inertia of the
system around its axis of rotation. With small angular
displacements θ (θ = (Xp,i − Xp)/lrod) and particles
much smaller than the rod length (Rp/lrod ≪ 1), the

angular momentum equation becomes meffẌp = Fdrag,
with meff = mrod/3 +mp + ρwπ

(

R2
rodlrod + 2R3

p

)

/3
where the last term accounts for the added mass of
rod and particle. The velocity of the particle can
be evaluated by integrating this equation of motion
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FIG. 4: (a) Velocity of the particle vs initial distance. (b) Nor-
malized particle velocity vs normalized distance. Data with
six different particles are used with a bubble generated by a
50 V spark, and one of the particles is also analyzed with 40
and 45 V sparks. The solid line represents a power-law of –4,
which is predicted in Eq. (5).

over the first two phases. For simplicity, the particle
displacement during the growth and the collapse of the
bubble is neglected: in the drag expression (2), we as-
sume Xp = Xp,i. This approximation is experimentally
justified: the particle position was measured in our
experiments during these phases, giving a maximum de-
parture from the initial position ∆Xp,i/Xp,i ∼ 0.3− 5%.
Therefore, we obtain

Ẋp,f =
1
2
CDρwπR

2
p

X4
p,imeff

(

∫ tg

0

R4
bṘ

2
bdt−

∫ tg+tc

tg

R4
bṘ

2
bdt

)

,

(3)
where tg and tc are respectively the duration of the grow-
ing and collapsing phase of the bubble. We assume that
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the bubble follows the same form of evolution during the
growth and the collapse, i.e. a self-similar solution f such
as :

Rb(t)

Rb,max

=







f
(

t
tg

)

if t ∈ [0; tg]

f
(

tg+tc−t

tc

)

if t ∈ [tg; tg + tc]
. (4)

This self-similar approximation is motivated by the fact
that the collapse of an empty spherical bubble follows a
similar scaling [35]. Figure 3 shows the bubble radius in
the growing and collapsing phases in order to verify the
self-similar approximation. The growing phase is shown
to be slightly slower than the collapsing phase in the nor-
malized scales. This discrepancy might be due to a fact
that the beginning of the spark is not necessary the nu-
cleation moment (t = 0) of cavitation as used in current
measurements. Hence, the real tg could be shorter than
the one we plotted in Fig. 3, which shifts the data points
up and left closer to the curve in the collapsing phase.
The slight mismatch between the approximation and ex-
perimental measurements is presumably attributed to the
experimental difficulty in measuring the nucleation time.
Still, it is verified a posteriori that the deviation is small
enough to give a good scaling.
Using Eq. (4), the integral term in Eq. (3) be-

comes −
∫ 1

0
f4f ′2 ×R6

b,max/τ , where τ = tgtc/ (tg − tc) is
a characteristic time of the bubble. This characteris-
tic time is always positive because the collapse is faster
than the growth, and τ can be seen as a measure of
the asymmetry of the bubble evolution. From these re-
sults, dimensionless velocity and position are defined re-

spectively as Ẋ∗

p,f = −Ẋp,f ×meffτ/
(

ρwR
2
pR

2
b,max

)

and

X∗

p,i = Xp,i/Rb,max, leading to the following power-law
relation:

Ẋ∗

p,f ∝
(

X∗

p,i

)

−4
. (5)

Figure 4(a) shows the particle velocity as a function of
the distance with 3 different particle sizes, 4 different
materials, and 3 different voltages. By normalizing the
velocity and the distance based on the above analytical
theory, we find that experimental data collapse well into
Eq. (5) as shown in Fig. 4(b).
In conclusion, we observed and characterized the ef-

fect of a spark-induced cavitation bubble on a distant
and small tethered spherical particle. This present study
focuses on the final phase of the coupled dynamics, where
the particle continues to move toward the center of the
bubble because of the asymmetric bubble dynamics. The
particle velocity inversely depends on the density and ra-
dius of the particle, and approximately on the 4th power
of the initial distance from the bubble.
Our analytical theory is under the assumption of spher-

ical bubbles and is then only valid for large γ values. We
even observed that when the spark occurs very close to
the particle, the particle can go away from the bubble

because of the strong influence of the rebound. Never-
theless, the inverse-4th-power law is close to the experi-
mental results with γ > 1, even though it underestimates
the effect of the distance (the best-fit slope on our data is
−4.8± 0.4). As the bubble is cavitated near the particle,
some deviations from the prediction have also been ob-
served: heavier particles (brass & steel) move faster than
expected compared to light particles (glass). In future
work, we plan on investigating the detailed consequence
of the precise bubble dynamics on the particle response,
especially for γ values close to and less than 1.
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