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We formulate an effective field theory description for SU(2)L triplet fermionic dark matter by
combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a
given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision
by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov
logarithms at next-to-leading logarithmic order. Using these results, we present more accurate
and precise predictions for the gamma-ray line signal from annihilation, updating both existing
constraints and the reach of future experiments.

If Weakly Interacting Massive Particles (WIMPs) ex-
ist at the TeV scale, their annihilations in the present
day – and hence their signatures in indirect dark mat-
ter (DM) searches – experience large corrections that are
not well described by a simple perturbative expansion in
the coupling. On the one hand, exchanges of electroweak
gauge bosons and photons between heavy DM particles
in the initial state give rise to a long-range attractive
potential. This “Sommerfeld enhancement” effect sums
large corrections ∼

∑
k(α2mχ/mW )k and has been ex-

tensively studied in the literature (e.g. [1–4]). On the
other hand, a large hierarchy between the DM mass mχ

and gauge boson mass mW will generate large logarith-
mic corrections to exclusive channels, and this has not
yet been explored in detail. A study [5] of wino DM
annihilation at one-loop found O(1) corrections, which
change the predicted annihilation cross section by a fac-
tor of a few. This is a signal of large logarithmic cor-
rections, ∼

∑
k(α2 ln2,1m2

χ/m
2
W )k, whose resummation

is the focus of this work.

This goal is not an abstract one: existing ground-
based gamma-ray telescopes can probe the annihilation
of multi-TeV DM [6, 7], and future colliders could also
have sensitivity [8]. Null results from the LHC already
place stringent lower bounds on the SUSY spectrum; so,
while direct constraints on DM from the LHC are still not
especially strong, the lack of a detection of new physics
below the TeV scale motivates consideration of heavier-
than-TeV DM and its properties. As one example, mod-
els of “split supersymmetry” [9, 10] can preserve the uni-
fication of gauge couplings with fermionic superpartners
at the TeV scale [11]. It is therefore imperative to under-
stand how to translate models of heavy DM into signal
predictions with accurate theoretical cross sections.

We focus on pure wino DM and its annihilation to line
gamma rays, χ0χ0 → γγ, γZ. At the weak scale and
above such spectral lines have zero astrophysical back-
ground, so detection would be a smoking gun for new
physics. We show that Sommerfeld enhancement effects
can be factorized from large logs to all orders in α2, and
compute the cross section at next-to-leading logarithmic
(NLL) order for line photon production, including an es-

timate of theoretical uncertainties.
Dark matter model. We do not know yet what the

non-gravitational interactions of Dark Matter (DM) are.
Here we are interested in DM being an SU(2)L triplet
of Majorana fermions, a scenario under active investiga-
tion [5, 6, 8, 12] both in the context of the SUSY wino
and more generally. The DM triplet can be written as:

χ =

(
χ0/
√

2 χ+

χ− −χ0/
√

2

)
, (1)

which transforms from left and right under the SU(2)L
gauge group of Standard Model (SM). We extend the
SM Lagrangian by including LDM = 1

2Tr χ̄
(
iD/ −Mχ

)
χ,

where the trace sums over the SU(2)L indexes and the
covariant derivative couples the DM to SM gauge bosons
W 1,2,3 or equivalently γ,W,Z (χ has zero hypercharge).
In principle the mass mixing and splitting can be de-
scribed by an arbitrary matrix Mχ; however in the mini-
mal scenario it is Mχ = mχ1. A small mass splitting be-
tween χ0 and χ− is generated radiatively; and we take it
to be δ = 0.17 GeV for the Sommerfeld calculation [1, 13],
but ignore it in the Sudakov calculation. The presence
of this splitting means the χ0 constitutes all the stable
DM. However, initial-state exchange of W bosons allows
excitation from a χ0χ0 two-body state into an (off-shell)
χ+χ− state, and in calculating the Sommerfeld-enhanced
cross section the matrix elements for annihilation from
χ0χ0 and χ+χ− initial states must therefore be included.

We focus on the late-time annihilation of triplet DM
and thus assume there are no on-shell χ± present in the
DM halo. We also assume s-wave annihilation, since p-
wave and higher terms are suppressed by at least the
square of the small DM velocity in the local halo (v ∼
10−3). This ensures the χ0χ0 initial state is a spin singlet.
This also implies that annihilation to three gauge bosons
is forbidden by CP conservation [5], so we consider only
two-body final states.
Electroweak corrections in NRDM-SCET. The

soft-collinear effective theory (SCET) [14–17] has been
used to describe electroweak radiative corrections in high-
energy processes via exchanges of weak gauge bosons of
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the SM gauge group [18, 19]. We generalize this for-
malism to the case with heavy nonrelativistic dark mat-
ter (NRDM) in the initial state, and use it to calculate
χχ → ZZ,Zγ, γγ. The calculation can be broken into
pieces: constructing operators, matching at a high scale
µ ' 2mχ, running down to µ ' mZ , and calculating
matrix elements at this low scale which include the Som-
merfeld enhancement.

EFT and High scale matching. At the high scale
µmχ '

√
s = 2mχ we match the annihilation process

in the full theory LSM +LDM onto a set of leading order
operators Or in our effective theory NRDM-SCET:

L(0)
ann =

∑2
r=1 Cr(mχ, µ)Or(mW/Z , v, µ) . (2)

There are only two operators in the complete basis for
spin-singlet S-wave annihilation of DM:

Or =
(
χaTv iσ2χ

b
v

) (
Sabcdr Bicn⊥B

jd
n̄⊥
)
iεijk(n− n̄)k ,

Sabcd1 = δab(Scen Sden̄ ) , Sabcd2 = (Saev Scen )(Sbfv S
df
n̄ ) . (3)

Here v = (1, 0, 0, 0), n = (1, n̂), and n̄ = (1,−n̂) with n̂
the direction of an outgoing gauge boson. χav is a non-
relativistic two-component fermion DM field in the ad-
joint representation, Bn,n̄ contain the observed (collinear)
gauge bosons, and the Sκ = Sκ[κ · As] are adjoint Wil-
son lines of soft gauge bosons along the κ = n, n̄, v di-
rections. Without soft gauge bosons there are only two
possible contractions of gauge indices, δabδcd and δacδbd,
since (χaTv iσ2χ

b
v) = χaαv χbβv εαβ is symmetric in (ab). Due

to the factorization properties of soft gauge bosons for
heavy particles v, or collinear particles n, n̄, the addition
of the soft Sκ Wilson lines does not change this, see [17].
The final state gauge bosons are also in a spin-singlet
with orthogonal polarizations so they must be contracted
with εijk. The outgoing energetic gauge bosons appear
in the adjoint collinear gauge invariant building block

Bµan⊥ = i/(in̄ · ∂n)n̄νG
νµb
n Wba

n = Aµan⊥ −
kµ⊥
n̄·k n̄ · A

a
n + . . .,

where Aµan is the n-collinear gauge boson field, Gνµbn is
the field strength, and Wba

n = Wba
n [n̄ · An] is a collinear

Wilson line in the adjoint representation. For the def-
inition of Bµan̄⊥ simply swap n ↔ n̄. In addition to

the hard annihilation process encoded in L(0)
ann, we will

also use the leading order SCETII Lagrangian [17] L(0)
SCET

and leading order nonrelativistic Lagrangian for DM

L(0)
NRDM = χ†v(iv ·∂+ ~∇2/2mχ)χv+ V̂ [χ

(†)
v ](mW,Z), where

V̂ is an operator giving the Yukawa and Coulombic po-
tentials from potential exchange of the W,Z, γ.

To determine the Wilson coefficients Cr at the high
scale we match from the full theory onto the effective
theory. Since Cr only contain ultraviolet physics this
matching can be done in the unbroken SM with mW =
mZ = 0. At tree level we find C1(µmχ) = −C2(µmχ) =

−πα2(µmχ)/mχ, where α2 = g2/4π = α/ sin2 θ̄W .

Sommerfeld-Sudakov Factorization Since L(0)
NRDM con-

tains no interactions with soft or collinear gauge bosons,

and L(0)
SCET contains no interactions with χvs, the matrix

element for the χ0χ0 evolution and annihilation factor-
izes from the matrix element involving the final state X:

Cr〈X|Or|χ0χ0〉 =
[
Cr iε

ijk(n−n̄)k〈X|Sabcdr Bicn⊥B
jd
n̄⊥
)
|0〉
]

× 〈0|χaTv iσ2χ
b
v|χ0χ0〉. (4)

For the spin-singlet state |(χaχb)S〉 = εβα|χaαχbβ〉/
√

2, the
Sommerfeld enhancement factors are encoded in〈

0
∣∣χ3T
v iσ2χ

3
v

∣∣(χ0χ0)S
〉

= 4
√

2mχs00 , (5)〈
0
∣∣χ+T
v iσ2χ

−
v

∣∣(χ0χ0)S
〉

= 4mχs0± ,

where the matrix elements are evaluated using the po-
tential V̂ . For these channels the corresponding matrix
elements on the first line of (4) can be denoted FX0 and
FX± , thus giving an all-orders factorized result for the
spin-singlet annihilation amplitudes

Mχ0χ0→X = 4mχ

(√
2s00F

X
0 + s0±F

X
±
)
, (6)

Mχ+χ−→X = 2
√

2mχ

(√
2s±0F

X
0 + s±±F

X
±
)
.

In the one-loop calculation of [5], the coefficients s
[5]
0 =

s00 and s
[5]
± = s0± were also included as multiplica-

tive factors, which is consistent with this factorization.
We obtain the Sommerfeld coefficients s00 and s0± by
solving the Schroedinger equation numerically (see e.g.
Appendix A of [6] for details). Note that at tree level
s00 = s±± = 1 and s0± = s±0 = 0.

With SU(2)L symmetry the gauge index structure of
the first line of (4) implies that the SCET perturbative
corrections at any order are encoded in just two Sudakov
form factors, Σ1 and Σ2. The gauge boson masses in-
duce symmetry breaking corrections at NLL which are
included by using ΣW1,2 for the W+W− final state, so

F γγ0 = Pγγ(Σ1−Σ2) , F γγ± = 2PγγΣ1 , (7)

FW
+W−

0 = PWΣW1 , FW
+W−

± = PW (2ΣW1 −ΣW2 ) ,

where the prefactors are Pγγ = −e2εin⊥ε
j
n̄⊥ε

ijkn̂k/(2mχ)

and PW = (g2/e2)Pγ . For F γZ0 and FZZ0 one simply
replaces Pγγ by PγZ = cot θ̄WPγγ or PZZ = cot2 θ̄WPγγ .
At tree level the form factors are all unity, Σ1 = Σ2 = 1.

For the γγ and γZ final states there is no tree-level
annihilation from χ0χ0, so we normalize by writing

σχ0χ0→X = σtree
χ+χ−→X

∣∣s00(Σ1 − Σ2) +
√

2s0±Σ1

∣∣2. (8)

Sudakov Resummation. We now calculate the Su-
dakov form factors Σ1,2. For simplicity, in this calcula-
tion we take all DM components to have a common mass
mχ. The operators O1,2 in (3) mix under renormalization
and the resummation of α2 ln2,1(m2

χ/m
2
W ) corrections is

achieved by finding their SCET anomalous dimension
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matrix, and running between the high scale µmχ ' 2mχ

and the low scale µZ ' mZ . For NLL order resumma-
tion we need the two-loop cusp and one-loop non-cusp
anomalous dimensions, plus the high scale matching at
tree level. The one-loop anomalous dimension matrix for
an operator with standard model quantum numbers and
any number of single collinear building blocks was de-
rived in Ref. [18], and we will make use of their results,
including the ∆-regulator [18, 20]. Our case differs from
this general result because the incoming nonrelativistic
DM fields are in the same direction v, and hence we have
two soft Sv Wilson lines that can interact with each other
or self-interact.

The anomalous dimension matrix for (C1 C2)T is

γ̂ = 2γWT
1 + γ̂S . (9)

Here γWT
is the collinear anomalous dimension of Bian⊥

which only mixes into itself, and hence multiplies a diag-
onal matrix. Including the two-loop cusp and one-loop
non-cusp terms it is equal to [18]:

γNLL
WT

=
α2

4π
Γg0 ln

2mχ

µ
− α2

4π
b0 +

(α2

4π

)2

Γg1 ln
2mχ

µ
, (10)

where here and below α2(µ) is in the MS scheme, and
for SU(2) in the SM, CA = 2, b0 = 19/6 is the one-
loop β-function, the cusp anomalous dimensions are Γg0 =
4CA = 8 and Γg1 = 8

(
70
9 −

2
3π

2
)
. When integrating, we

will also need the two-loop β-function b1 = −35/6.
The soft anomalous dimension γ̂S encodes the run-

ning and mixing of the soft factors Sabcd1,2 and hence has
non-trivial structure. After canceling the regulator de-
pendent part with the zero-bin subtracted [21] collinear
graphs, the remaining non-zero one-loop contributions
come from: wavefunction renormalization from self con-
tracting a Sv, connecting the two Sv Wilson lines, and
connecting the Sn and Sn̄ Wilson lines. The wavefunc-
tion renormalization is the same as in Heavy Quark Effec-
tive Theory, γhv = −CAα2/(2π). The full result needed
at NLL is

γ̂NLL
S =

α2

π
(1− iπ)

(
2 1

0 −1

)
− 2α2

π

(
1 0

0 1

)
. (11)

At the low scale µZ ' mZ the operators O1, O2

are matched onto operators with W,Z, γs, and ef-
fects associated with the gauge boson masses are in-
cluded from low scale matching (or using the rapid-
ity renormalization group [22, 23]). Here we are in-
terested in neutral transverse final state gauge bosons,
where the matching at NLL order reads [19] B3

⊥ →
exp(D) (Z⊥ cos θW +A⊥ sin θW ) with

D(µZ) =
α2(µZ)

2π
ln

4m2
χ

µ2
Z

ln
m2
W

µ2
Z

. (12)

The Sommerfeld enhancement factors in (5) are low scale
matrix elements which are also calculated at µZ ' mZ

in the MS scheme.
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FIG. 1. Resummed leading and next-to-leading logarithmic
electroweak corrections for χ+χ−, χ0χ0 → ZZ,Zγ, γγ. Only
high scale variation by a factor of 2 from µmχ = 2mχ is shown.
Low scale variation has a 20% smaller error band for the top
plot and a 5% bigger error band for the bottom plot.

Analytical resummation formula at NLL order. The
resummed amplitude is[

C1(µZ)

C2(µZ)

]
= eD(µZ)P exp

(∫ µZ

µmχ

dµ

µ
γ̂

)[
C1(µmχ)

C2(µmχ)

]
. (13)

This equation can be integrated analytically using
dµ/µ = dα2/β2[α2]. For X = ZZ, γZ, γγ we find

Σ1 =
eΩ+D

3

(
2 z−

4ψ
b0 + z

2ψ
b0

)
, (14)

Σ1 − Σ2 =
2 eΩ+D

3

(
z−

4ψ
b0 − z

2ψ
b0

)
,

where ψ = 1− iπ, z = α2(µZ)/α2(µmχ), D is in Eq. (12),
and Ω at NLL order equals

Ω =
−2πΓg0

(
z ln z+1−z

)
b20 α2(µZ)

−
Γg0 b1

(
ln z−z− ln2 z

2 +1
)

2b30

− ln z

2b0

[
8
(

ln
4m2

χ

µ2
mχ

− 1
)
− 2b0

]
− Γg1

2b20
(z−ln z−1) . (15)
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FIG. 2. Left panel: Our NLL+SE cross section for χ0χ0 annihilation to line photons from γγ and γZ, compared to earlier
results. Right panel: current bounds from H.E.S.S and projected reach of 5 hours of CTA observation time, overlaid with our
(and previous) cross section predictions, for an NFW profile, with local velocity v/c ∼ 10−3.

At LL order we would only have Σ1 = Σ2 = exp(Ω0)
where Ω0 is the first term in (15). Treating Sommerfeld
effects at tree-level the ratio of cross sections is given by
the Sudakov form factors

σNLL+��SE
χ+χ−→X

σtree
χ+χ−→X

= |Σ1|2,
σNLL+��SE
χ0χ0→X

σtree
χ+χ−→X

= |Σ1 − Σ2|2 . (16)

This nonzero result for χ0χ0 → ZZ,Zγ, γγ at short
distances starts at NLL in |Σ1 − Σ2|2, and occurs be-
cause there is a Sudakov mixing between the W+W− and
W 3W 3 from soft gauge boson exchange. This is similar
in spirit to the Sommerfeld mixing of the initial states.

In Fig. 1 we plot |Σ1|2 and |Σ1 −Σ2|2 as a function of
mχ. To obtain theoretical uncertainty bands we use the
residual scale dependence at LL and NLL obtained by
varying µmχ = [mχ, 4mχ] and µZ = [mZ/2, 2mZ ]. The
one-loop fixed order results of [5] are within our LL un-
certainty band. Our NLL result yields precise theoretical
results for these electroweak corrections. To test our un-
certainties we added non-logarithmic O(α2) corrections
to C1,2(µmχ), of the size found in [5], and noted that the
shift is within our NLL uncertainty bands.

Indirect Detection Phenomenology Combining
Eqs. 8 and 14 with the standard Sommerfeld enhance-
ment (SE) factors s00 and s0±, we can now compute
the total cross section for annihilation to line photons
at NLL+SE and compare to existing limits from indirect
detection. We sum the rates of photon production from
χ0χ0 → γγ, γZ, as the energy resolution of current in-
struments is typically comparable to or larger than the
spacing between the lines (see e.g. [6] for a discussion).

In Fig. 2 we display our results for the line cross sec-
tions calculated at LL+SE and NLL+SE. Our theoretical
uncertainties are from µmχ variation. (The µZ variations
are very similar. Since both cases are dominated by the

variation of the ratio of the high and low scales we do
not add them together.) In the left panel we compare to
earlier cross section calculations, including “Tree-level +
SE” where Sudakov corrections are neglected, the “One-
loop fixed-order” cross section where neither Sommer-
feld or Sudakov effects are resummed (taken from [7]),
and the calculation in [5] where Sommerfeld effects are
resummed but other corrections are at one-loop. At low
masses, our results converge to the known ones (except [5]
which focused on high masses, omitting the term |F γγ0 |2
which is important at low masses). At high masses, our
NLL+SE result provides a sharp prediction for the anni-
hilation cross section with ' 5% theoretical uncertainty.

In the right panel of Fig. 2 we compare the NLL cross
section to existing limits from H.E.S.S [24] and projected
ones from CTA. In the latter case we follow the prescrip-
tion of [6], based on [25], and in both cases we assume
an NFW profile [26] with local DM density 0.4 GeV/cm3

(consistent with [27–29]). We assume here that the χ0

constitutes all the DM due to a non-thermal history (the
limits can be straightforwardly rescaled if it constitutes
a subdominant fraction of the total DM). For this pro-
file, we see that H.E.S.S already constrains models of
this type for masses below ∼ 4 TeV, consistent with the
results of [6] (which employed the tree-level+SE approx-
imation), and that five hours of observation with CTA
could extend this bound to ∼ 10 TeV. Any constraint
on the line cross section should be viewed as a joint con-
straint on the fundamental physics of DM and the distri-
bution of DM in the Milky Way [30].

The method we developed here allows systematically
improvable effective field theory techniques to be applied
to DM, and enabled us to obtain NLL+SE predictions for
the DM annihilation cross section to photon lines. This
enables precision constraints to be placed on DM.
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Note added: As our paper was being finalized two pa-
pers appeared [31, 32] which also investigate DM with
SCET. They are complementary to ours: [31] computes
the semi-inclusive cross-section for fermionic DM anni-
hilation at LL, and [32] investigates the exclusive line
annihilation cross section for scalar DM up to NLL. The
O(α) corrections obtained from matching at µ = 2mχ

in [32] are consistent with our 5% uncertainty estimate.
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