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Abstract

The Wigner little group for massless particles is isomorphic to the Euclidean group SE(2).

Applied to momentum eigenstates, or to infinite plane waves, the Euclidean “Wigner translations”

act as the identity. We show that when applied to finite wavepackets the translation generators

move the packet trajectory parallel to itself through a distance proportional to the particle’s helicity.

We relate this effect to the spin Hall effect of light and to the Lorentz-frame dependence of the

position of a massless spinning particle.

PACS numbers: 03.30.+p, 03.50.De, 11.30.Cp
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I. INTRODUCTION

The Poincaré group provides the fundamental kinematic symmetry of a relativistic par-

ticle. As a non-compact group its unitary representations are infinite dimensional — but

Wigner showed [1] that the physically interesting representations can be induced from finite-

dimensional unitary representations of a little group, which is the subgroup of homogeneous

Lorentz transformations that leaves some reference four-momentum pµ0 invariant. The repre-

sentation space of the little group is the Hilbert space for the particle’s spin. If the particle

has positive mass m, we may take as reference the four-momentum in the particle’s rest

frame where pµ0 = (m,0). The little group then consists of the space rotations SO(3).

For a massless particle there is no rest frame and the reference momentum must be a null

vector pµ0 → (|p0|,p0). The little group now consists of SO(2) space rotations about the

three-vector p0, together with operations that are generated by infinitesimal Lorentz boosts

in directions perpendicular to p0 combined with compensating infinitesimal rotations. Re-

markably the combined operations mutually commute, possess all the algebraic properties of

Euclidean translations, and the resulting little group is isomorphic to the symmetry group

SE(2) of the two-dimensional Euclidean plane. What are these Euclidean “Wigner trans-

lations” translating? The answer given by Wigner is nothing: if the translation generators

had a physical effect, the little-group representation would be infinite dimensional and the

particle being described would have “continuous spin” — a property possessed by no known

particle. Indeed the Wigner translations have no effect when applied to plane-wave solu-

tions of the massless Dirac equation, and act as gauge transformations when applied to the

vector potentials of plane-wave solutions of Maxwell’s equations [2]. Consequently they act

as the identity on the momentum eigenstates created by the operator-valued coefficients of

the plane-wave modes, thus ensuring that the spin of a massless particle is entirely specified

by a finite-dimensional representation of the SO(2) helicity subgroup [3].

Here we show that, while they have no effect on infinite plane waves, when applied

to finite-size wave packets of non-zero helicity — and in particular to circularly polarized

Gaussian packets — the Wigner translations do have an effect: they shift the wave-packet

trajectory parallel to itself. This shift is related to the optical spin Hall effect [4–8] and

to the observer dependence of the location of massless particles [9]. It gives rise to the

unusual Lorentz covariance properties found [10, 11] in the chiral kinetic theory approach
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to anomalous conservation laws [12–14] and is also the source of the difficulty of obtaining

a conventionally-covariant classical mechanics for a massless spinning particle in a gravita-

tional field [15, 16].

In section II we will provide a suggestive algebraic argument for a sideways shift. In

section III we will show that the shift actually occurs in finite-width beam solutions to

Maxwell’s equations. In section IV we will discuss and resolve a potential paradox implied

by the trajectory displacement.

II. POINCARÉ ALGEBRA AND MASSLESS PARTICLES

As an indication that Wigner translations can have a physical effect, we review a re-

alization of the Poincaré algebra for massless particles of helicity λ in terms of quantum

mechanical position and momentum operators [17–20]. We start from the familiar commu-

tators

[x̂i, p̂j] = i~ δij, [p̂i, p̂j] = 0, (1)

and use the fact that the spin of a massless particle is slaved to its direction of motion to

motivate a definition of the angular momentum operator as

Jk = εklmx̂lp̂m + λ
p̂k
|p̂|

. (2)

This unconventional definition preserves the usual commutation relation

[Jk, p̂l] = i~ εklmp̂m, (3)

but in order to recover

[Jk, x̂l] = i~ εklmx̂m (4)

and

[Jk, Jl] = i~ εklmJm, (5)

we need to modify the commutator of the position-operator components to

[x̂k, x̂l] = −i~λ εklm
p̂m
|p̂|3

. (6)

Accepting that the position-operator components no longer commute, we can still use p0 ≡

|p| to define a generator of Lorentz boosts in direction k as

Kk = 1
2
(x̂k|p̂|+ |p̂|x̂k). (7)
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These generators satisfy the remaining relations of the Lorentz Lie algebra

[Jk, Kl] = i~ εklmKm,

[Kk, Kl] = −i~ εklmJm, (8)

and act as expected on the momentum components:

[Kk, |p̂|] = i~ p̂k,

[Kk, p̂l] = i~ δkl|p̂|. (9)

We have therefore constructed a representation of the Poincaré algebra on a quantum-

mechanical Hilbert space.

When we extend the algebra to include the position operators we find (at t = 0)

[Kk, x̂l] = −i~
{

1

2

(
x̂k

p̂l
|p̂|

+
p̂l
|p̂|

x̂k

)
+ λεklm

p̂m
|p̂|2

}
. (10)

Neither term is immediately familiar. The expression in parenthesis arises because the under-

lying Hamiltonian formalism automatically maintains the non-Lorentz invariant condition

x0 = t [21]. The term containing the helicity λ will be more interesting.

We select a reference four-momentum pµ0 = (|p0|,p0) where p0 = (0, 0, p) and obtain

the corresponding Wigner translation generators as the boosts and compensating rotations

given by

Π1 = K1 + J2,

Π2 = K2 − J1. (11)

From (8) we see that these generators obey the SE(2) Lie algebra

[Π1,Π2] = 0, [J3,Π1] = i~Π2, [J3,Π2] = −i~Π1. (12)

From (9) and (10) we also see that x̂1, x̂2, and the SE(2) generators collectively leave

invariant the eigenspace with eigenvalues p = (0, 0, p) and any fixed x3. Acting within the

particular invariant subspace with x3 = 0, we find that

[Πk, x̂l] = −i~ εkl3
λ

p
, (k, l = 1, 2). (13)

In (13) the Wigner “translations” seemingly effect a genuine infinitesimal translation of the

x1, x2 coordinates in the x3 = 0 plane, and hence a translation of the particle trajectory
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x(t) = (x1, x2, t) parallel to itself. Is this apparent displacement merely an artifact of an

unconventional representation of the Poincaré algebra, or is it physical?

At issue is the question: “what is x?”. There are several distinct candidates for the

position operator of a relativistic particle that differ in both their commutation and and

covariance properties [19, 20, 22]. In the next section we will use solutions of Maxwell’s

equations to demonstrate that the particular non-commuting position operator x in eq. (13)

represents the wavepacket energy-centroid in the observer’s x0 ≡ t Lorentz frame. This

centroid is where a stationary detector would locate the photon, but is a frame-dependent

quantity. As a consequence the trajectory of a circularly polarized photon is observer depen-

dent and is translated parallel to itself under an infinitesimal Lorentz boost and aberration-

compensating rotation.

III. PARAXIAL MAXWELL BEAMS

We wish to consider the action of boosts and rotations on a finite-sized photon wavepacket.

It will serve to consider their effect on a finite-width laser beam in the paraxial approxima-

tion. We will use units in which µ0 = ε0 = c = 1.

The scalar paraxial wave equation

∂2χ

∂x2
+
∂2χ

∂y2
+ 2ki

∂χ

∂z
= 0 (14)

is obtained from the full scalar wave equation by writing

φ(r, t) = χ(r)eik(z−t) (15)

and assuming that χ(r) is sufficiently slowly varying that we can ignore its second derivative

∂2χ/∂z2 in comparison to the remaining terms in (14).

The simplest solution of eq. (14) is the Gaussian-beam [23]

χ(r) =
1

(z − iz0)
exp

{
−x

2 + y2

2w2(z)
+ ik

x2 + y2

2R(z)

}
, (16)

where

w2(z) =
z2 + z2

0

kz0

; R(z) =
z2 + z2

0

z
. (17)

In this solution the beam is propagating in the +z direction, the quantity w(z) is the width of

the beam at a distance z from its waist, and R(z) is the radius of curvature of the wavefront
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FIG. 1: Slice through a paraxial scalar beam with parameters k = 10, z0 = 10. a) Density plot of

original beam amplitude Re{χ(x, 0, z, 0)eikz}; b) Beam amplitude after Lorentz transformation (eq.

(25)) with rapidity s = 0.5; c) Beam amplitude after both Lorentz transformation and aberration-

compensating rotation through θ = − tan−1(sinh s) = −31.5◦.

passing through the point r = (0, 0, z). The width grows linearly with z once z � z0, and the

angular half-width is 1/kw(0). The condition for the paraxial approximation to be accurate

(kz0 � 1) is equivalent to the beam having small asymptotic divergence. We will always be

interested in the region z < z0 where the beam is narrow and almost parallel sided.

From any two independent solutions f , g of the scalar paraxial equation we can find [24]

vector E and B fields that are internally consistent solutions of Maxwell’s equations up to

accuracy of order 1/(kl)2, where l is some charateristic length such as z0

Ex(r, t) = f(r, t) +
1

4k2

(
∂2f

∂x2
− ∂2f

∂y2

)
+

1

2k2

∂2g

∂x∂y
,

Ey(r, t) = g(r, t)− 1

4k2

(
∂2g

∂x2
− ∂2g

∂y2

)
+

1

2k2

∂2f

∂x∂y
,

Ez(r, t) =
i

k

(
∂f

∂x
+
∂g

∂y

)
, (18)

and

Bx(r, t) = −g(r, t) +
1

4k2

(
∂2g

∂x2
− ∂2g

∂y2

)
+

1

2k2

∂2f

∂x∂y
,

By(r, t) = f(r, t)− 1

4k2

(
∂2f

∂x2
− ∂2f

∂y2

)
− 1

2k2

∂2g

∂x∂y
,

Bz(r, t) = − i
k

(
∂g

∂x
− ∂f

∂y

)
. (19)

To obtain a Gaussian beam that is circularly polarized with positive helicity we take f(r, t) =
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χ(r)eik(z−t) and g(r, t) = iχ(r)eik(z−t), with χ(r) given by eq. (16).

Using MathematicaTM to manipulate the resulting rather lengthy expressions we find, for

example, that the time-averaged energy density in the beam is

T 00 ≡ 1

2
〈|E|2 + |B|2〉 =

(x2 + y2 + 4(z2 + z2
0))2

8(z2 + z2
0)3

e−kz0(x2+y2)/(z2+z20), (20)

and the three components of the time-averaged Poynting vector S = 〈E×B〉 are

Sx = T 10 =
(x3z − x2yz0 + xy2z − y3z0 + 4(xz − yz0)(z2 + z2

0))

2(z2 + z2
0)3

e−kz0(x2+y2)/(z2+z20),

Sy = T 20 =
(y3z + y2xz0 + x2yz + x3z0 + 4(yz + xz0)(z2 + z2

0))

2(z2 + z2
0)3

e−kz0(x2+y2)/(z2+z20),

Sz = T 30 =
(−x4 − 2x2y2 − y4 + 16(z2 + z2

0)2)

8(z2 + z2
0)3

e−kz0(x2+y2)/(z2+z20). (21)

The energy-flux streamlines twist in the direction of the beam helicity [25], consequently the

z component of the angular momentum density

Σz = xSy − ySx (22)

is non-zero. If we integrate over the plane z = 0 we find that

Pz
def
=

∫∫
z=0

Sz dxdy =
π(−1 + 8k2z2

0)

4k3z3
0

=
2π

kz0

{
1 +O

(
1

(kz0)2

)}
, (23)

and

Jz
def
=

∫∫
z=0

Σz dxdy =
π(1 + 2kz0)

k3z2
0

=
1

k

2π

kz0

{
1 +O

(
1

(kz0)2

)}
. (24)

The ratio Pz/Jz is equal to k in the region kz0 � 1, where the paraxial approximation is

accurate. This is what is to be expected: Pz gives the linear momentum per unit length,

which should be ~k per photon; Jz gives the angular momentum per unit length of the beam,

which should be ~ per photon.

We now compute the E and B fields as seen from a reference frame moving along the +x

axis at rapidity s. The corresponding Lorentz transformation takes

Ex(x, y, z, t) 7→ Ex(x
′, y, z, t′),

Ey(x, y, z, t) 7→ Ey(x
′, y, z, t′) cosh s−Bz(x

′, y, z, t′, ) sinh s

Ez(x, y, z, t) 7→ Ez(x
′, y, z, t′) cosh s+By(x

′, y, z, t′) sinh s,

Bx(x, y, z, t) 7→ Bx(x
′, y, z, t′)

By(x, y, z, t) 7→ By(x
′, y, z, t′) cosh s+ Ez(x

′, y, z, t′) sinh s,

Bz(x, y, z, t) 7→ Bz(x
′y, z, t′) cosh s− Ey(x′, y, z, t′) sinh s, (25)
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where

x′ = x cosh s+ t sinh s

t′ = t cosh s− x sinh s. (26)

The Lorentz transformation changes the wave vector from k = (0, 0, k) to k′ =

(k sinh s, 0, k), so the direction of propagation has been rotated through an aberration angle

of |θ| = tan−1(sinh s). The wavefronts are therefore tilted. The beam envelope, however,

still lies parallel to the z-axis, and is moving towards the observer at speed β = tanh s (see

figure 1-b).

The Lorentz transformation also affects the energy density distribution and the Poynting-

vector flux through the z = 0 plane. In addition to a Lorentz contraction it noticeably shifts

the positions of their maxima (see figure 2). To quantify these shifts we can compute the

location of the Lorentz transformed energy density and energy flux centroids. The required

integrals are still Gaussian and can be done analytically. With the definition

E =

∫∫
z=0

T 00dxdy, (27)

we have

[∆y]density =
1

E

∫∫
z=0

y T 00dxdy,

=
z0(4 + 8kz0 sinh s)

(1 + 8kz0 + 8k2z2
0) cosh s− 4kz0 sech s

,

=
1

k
tanh s

{
1 +O

(
1

(kz0)2

)}
, (28)

and

[∆y]flux =
1

Pz

∫∫
z=0

y Szdxdy,

=
2z0(1− 2kz0) tanh s

1− 8k2z2
0

,

=
1

2k
tanh s

{
1 +O

(
1

(kz0)2

)}
. (29)

For positive helicity, both centroids are displaced to the left when seen by an observer

moving towards the upward-propagating beam. The centroids do not coincide, the energy-

flux centroid moving only half as far as the energy-density centroid. Such displacements

are not restricted to Gaussian beams. A similar boost-induced sideways shift and centroid
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separation was exhibited in [9] for Bessel beams possessing orbital angular momentum. The

centroid separation arises solely from the geometrical effect pointed out in [26]: because of

their corkscrew trajectories, energy-flux streamlines passing through a surface rotated away

from perpendicular to the direction of propagation find themselves inclined at different

angles to the surface to the right and left of the plane of rotation. Consequently, even in

the absence of a Lorentz boost, the energy-flux centroid of a tilted beam is displaced with

respect to its energy-density centroid [26].

We wish to obtain a finite-displacement version of the Wigner translations, so, after

performing the boost, we rotate the Lorentz transformed beam about r = 0 through an

aberration-compensating angle of tan−1(sinh s). After the rotation the wavevector becomes

k = (0, 0, k cosh s) and the wavefronts again lie parallel to the x-y plane. Consequently the

energy-flux streamlines no longer possess a left-right asymmetry. We find numerically that

the position of the energy centroid in the z = 0 plane is unchanged by the rotation (T 00 is a

scalar under space rotations) while the energy-flux centroid moves into coincidence with the

energy-density centroid. As a result of the combined boost and compensating rotation, both

centroids have been shifted by ∆y = (1/k) tanh s = β/k, where β = v/c. The beam spot is

restored to its pre-boost appearance, and we could repeat the operation and translate the

beam spot through a further distance. If we reverse the helicity, we change the sign of this

shift.

In the absence of the lateral shift, the combination of boost and compensating rotation

would leave the trajectory of a short wavepacket emitted from r = 0 at t = 0 unchanged.

The continuous beam, which can be thought of as arising from a stream of sequentially

emitted wavepackets, is not invariant, however. How it changes is shown in fig. 1-c. The

transformed beam can be thought of as a sequence of pulses each fired in the +z direction

by an emitter that is moving rapidly to the left. It is reminiscent of a diagonal stream of

strictly upward-moving projectiles fired from a horizontally moving gun in the old AtariTM

game “Space Invaders.” Any particular packet continues to move parallel to the z axis, but

as a result of the lateral shift in the z = 0 plane, its entire trajectory is shifted sideways by

∆y = (1/k) tanh s. Figure 1-c also shows why the action of the Wigner translations take

their simple form (13) only in the plane x3 ≡ z = 0. In any other plane the translations get

mixed up with the geometric effect of the rotation.

The finite-s boosts considered in this section have effects on the photon energy and
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FIG. 2: Beam spot profiles in the z = 0 plane for k = 10, z0 = 3. a) Original intensity T 00(x, y);

b) Lorentz transformation of T 00(x, y) under eq. (25) with rapidity s = 2.0. The spot center is

at y = 0.095 (black arrow); c) Poynting energy flux Sz(x, y) = T 30 after Lorentz transformation.

The spot center is at y = 0.0475 (black arrow); d) Poynting energy flux Sz(x, y) = T 30(x, y) after

aberration-compensating rotation. The flux maximum is at y = 0.095 (black arrow). The rotated

intensity distribution has similar appearance, and its maximum is also at y = 0.095.

intensity that appear at quadratic order in the rapidity s. If we alternate a sequence of

infinitesimal boosts and compensating rotations, the quadratic terms can be neglected and

only the sideways shift (now equal to λ/p times the total rapidity change) remains. We are

in effect assembling a Trotter-product approximation that converges to exponentials of the

Wigner translation generators (11).
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FIG. 3: a) A pair of massless particles with spin S collide head-on; b) The particles viewed from

above in a frame moving towards the collision with velocity v = |v|ŷ; c) A front view from the

moving frame shows the particles miss one another.

IV. DISCUSSION

The direction and magnitude of the boost-induced lateral shift can be understood from

a geometric picture (See [10] for a related argument). Consider two massless particles, both

possessing helicity p·Sspin/|p| = λ and heading directly towards one another parallel to the x

axis. Because they will collide head-on, they have no relative orbital angular momentum and

the two spin angular momenta Sspin = (±λ, 0, 0) also sum to zero. Seen from a frame moving

along the y axis towards the collision point, however, the unit vectors in the direction of

the particles’ motion have components (±sech s,− tanh s, 0). Because the spin of a massless

particle is slaved to its direction of motion, there is now a net spin component of 2λ tanh s

directed towards the observer. Nonetheless, in the new frame, the total angular momentum

is still zero, so the spin contribution must be offset by an orbital angular momentum of

−2λ tanh s. This orbital angular momentum can only come from a lateral shift of each

particle’s trajectory by ∆z = (±λ/|p|) tanh s (see fig. 3). For a photon p = ~k and λ = ~,

so we recover the shift seen in our Gaussian beam. Of course, if two particles collide and

produce two pions in one frame, they must produce two pions when seen from another

frame. That the particles apparently miss each other because of the sideways shift cannot

affect the pion production. The incipient paradox is resolved by the fact that partial-wave

scattering amplitudes depend only on the total relative angular momentum J = L + Sspin

of the particles, and this quantity is not affected by the shift. The shift still has physical

consequences, though. If we move a detector such as a photographic emulsion through the

beam, it will be sensitive to either the energy density or the energy flux in its own rest

frame, and these quantities have been displaced by the motion.
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