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The so-called “non-Fermi liquid” behavior is very common in strongly correlated systems. How-
ever, its operational definition in terms of “what it is not” is a major obstacle for theoretical
understanding of this fascinating correlated state. Recently there has been much interest in entan-
glement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have
been limited to models without direct experimental realizations. Here we focus on a two dimen-
sional electron fluid under magnetic field and filling fraction ν = 1/2, which is believed to be a
non-Fermi liquid state. Using a composite fermion wave-function which captures the ν = 1/2 state
very accurately, we compute the second Rényi entropy using variational Monte-Carlo technique. We
find the entanglement entropy scales as L logL with the length of the boundary L as it does for free
fermions, but has a pre-factor twice that of free fermions.

Despite its ubiquity in strongly correlated materials,
the metallic “non-Fermi liquid” (nFL) behavior has been
challenging to characterize theoretically. At the phe-
nomenological level, non-Fermi liquid behavior is defined
by a metallic system exhibiting physical properties that
are qualitatively inconsistent with Landau’s Fermi-liquid
theory. Examples of non-Fermi liquid metals include
the strange-metal phase of the high Tc cuprates[1], sys-
tems near a metallic quantum critical point[2–4] and two-
dimensional electron system subject to a magnetic field
at filling ν = 1/2 (often referred to as Fermi-liquid-like
state) [5–7]. However, there are many ways in which a
system can deviate from a normal Fermi-liquid, such as
diverging effective mass, vanishing quasiparticle weight,
and anomalous transport[3, 8–12] and little is known
about how different forms of deviation can be related.
Hence the theoretical challenge of addressing a prob-
lem without a weakly interacting quasiparticle descrip-
tion has been compounded by the lack of a measure that
can be used to define and classify non-Fermi liquids.

Here we turn to a quantum information measure that
is sensitive to entangled nature of many-body wave-
functions: the bi-partite entanglement entropy. For
gapped systems, the entanglement entropy of the reduced
density matrix ρA ≡ TrB |Ψ〉〈Ψ| of a subsystem A with
respect to its complement B for a given ground state
wave-function |Ψ〉 is widely believed to follow the area
law, i.e., asymptotically proportional to the contact area
of two subsystems, with rigorous arguments for lattice
systems [13–15]. On the other hand, an explicit for-
mula for a multiplicative logarithmic correction to the
area law was suggested by Gioev and Klich [16] based on
the Widom conjecture[17] and numerically confirmed in
Ref. [18] for free fermions at dimensions d > 1 and rigor-
ously proved in Ref. [19]. This dramatic violation of the
area law for free fermions with a Fermi surface is in stark
contrast to the area law found for critical bosons[15] up
to subleading corrections[20, 21].

A key question is whether non-perturbative strong cor-
relation effects can further enhance bi-partite entangle-
ment entropy. Since the explicit form of bi-partite entan-
glement entropy found in Refs. [16, 18] follows from exact
results on non-interacting one-dimensional Fermion sys-
tems associated each points in Fermi surface[22], strong
interactions are likely to cause corrections to this explicit
form. So far the only explicit result available for strongly
interacting fermions at d > 1 is by Zhang et al. [23] for
Gutzwiller projected two-dimensional (2D) Fermi-surface
which is a model wave-function for a critical spin-liquid
with spinon Fermi surface. Their variational Monte Carlo
calculation of second Rényi entropy S2 showed little
change in both the functional dependence on LA the lin-
ear dimension of the subsystem A (i.e., S2 ∝ LA logLA)
and the coefficient upon projection. Following this nu-
merical work, Swingle and Senthil [24] argued that the
entanglement entropy of certain nFL would follow the
same scaling form. Alternatively AdS/CFT correspon-
dence approach yielded a wealth of results on non-Fermi
liquids and their entanglement entropy (see for instance
[25]). However there is no established connection between
these results and experimental systems.

In this letter we focus on a composite fermion[26] (CF)
wave-function for the Halperin-Lee-Read[8] (HLR) half-
filled Landau level ν = 1/2 nFL state as a test case.
There is strong numerical, theoretical and experimental
support for the HLR description of the observed ν = 1/2
lowest-Landau-level (LLL) compressible state. First, the
pair correlation function calculated with a spherical-
geometry wave-function[27][28] shows a good agreement
with the structure factor obtained from the exact ground
state wave-function [27]. Further, the wave-function is
supported by field theoretical studies of fermions coupled
to a Chern-Simons gauge field [8, 29] as it describes a
state with diverging effective mass for fermions with flux
attachment. Finally, the ν = 1/2 state is experimentally
established to be a non-Fermi liquid state with a Fermi
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surface supporting anomalous sound propagation [5–7],
in agreement with expectations of Refs. [8, 29]. We cal-
culate second Rényi entropy S2 using variational Monte
Carlo techniques implementing a “particle number trick”.
We will focus on the comparison between subsystem lin-
ear dimension LA dependence of S2 for free fermions and
for the CF wave-function.

Rényi entanglement entropy and Widom formula.–
The second Rényi entropy is defined as

S2 ≡ − ln
[
TrA

{
ρ2
A

}]
, (1)

where ρA ≡ TrB |Ψ〉〈Ψ| is the reduced density matrix of
region A. S2 has become a quantity of growing interest as
a measure of bi-partite entanglement since a convenient
scheme for calculating S2 using variational Monte Carlo
technique was shown in Ref. [30]. For free fermions the
leading LA dependence of second Rényi entropy is given
by[16, 18, 19]

S2 =
3

48
c(µ)LA logLA + o(LA logLA),

c(µ) = (2π)1−d
∫
∂Ω

dSx

∫
∂Γ

dSk|nk · nx|, (2)

where µ is the chemical potential, Ω is the real space re-
gion A and ∂Γ is the Fermi surface. nx and nk denote
the normal vectors on the spatial boundary ∂Ω and the
Fermi surface respectively. For Eq. (2), the linear dimen-
sion of the system is scaled to unity. In this work, we will
consider 37 fermions in 2D occupying momenta shown in
Fig. 1 for both free fermions and for a ν = 1/2 composite
fermion non-Fermi liquid. We maintain the same density
for both cases by setting k2

F = 10π/37 in units of `, the
magnetic length. A straight forward evaluation of c(µ)
for the Fermi surface shown in Fig. 1 and a square-shaped
LA × LA region A results in an asymptotic form for the
second Rényi entropy

S2,Widom ∼ (0.159)λ log λ (3)

as a prediction based on “Widom formula” Eq. (2). From
here on we use the dimensionless quantity λ ≡ kFLA,
where kF is the radius of the Fermi surface.

Monte Carlo evaluation of S2.– In order to calculate
the Rényi entropy S2 for the ν = 1/2 CF wave-function,
we use the scheme of Ref. [30] and consider two copies
of the system to evaluate the expectation value of the
SWAP operator which is related to S2 as follows:

e−S2

=
∑
β1,β2

∑
α1,α2

〈β2|〈α1|Ψ〉〈Ψ|α1〉|β1〉〈β1|〈α2|Ψ〉〈Ψ|α2〉|β2〉

≡ 〈SWAPA〉 . (4)

Here αi and βi, with i = 1, 2 for the two copies, are real
space coordinates within each copy of subregions, i.e.,
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FIG. 1. Fermi surface for N = 37 particles in 2D. The set
of momenta are shown as blue points. Red circle denotes the
Fermi surface ∂Γ of radius kF ≈

√
10π/37.

α1 ∈ A1, β1 ∈ B1 and α2 ∈ A2, β2 ∈ B2. Below we cal-
culate the expectation value for the model wave-function
by sampling the wave-function over the two copies, in-
troducing a “particle number trick” which improves the
computing time and allows for parallelization compared
to the previous calculation of S2 for itinerant fermions[31]
.

Particle number trick.– Compared to the case of posi-
tive definite spin wave-functions studied in Ref. [30], itin-
erant fermion systems come with two major challenges
against evaluation of 〈SWAPA〉: (1) the wave-function is
not positive definite, (2) the number of fermions in the re-
gion A fluctuates. The first issue had been partially mit-
igated in Ref. [23] using the so-called “sign trick” exactly
factorizing 〈SWAPA〉 into a product of two terms each
concerning only magnitude or only sign. On the other
hand, the fermion number fluctuation was not an issue in
Ref. [23] as the Gutzwiller projector ensured one fermion
per site. For the case of composite fermions however the
statistical error increased dramatically at large LA, and
was only partially mitigated by the sign trick. This mo-
tivated us to implement a “particle number trick” that
can further reduce error-bars.

The particle number trick uses the fact that 〈SWAPA〉
can be further exactly factorized into contributions from
sectors of fixed particle numbers in each subregion[32].
By delegating more processor time to those number sec-
tors that contribute most to the entropy, we could per-
form the computation more efficiently. For example, it
took about 104 CPU hours per data point to achieve error
bars comparable to the free fermion case with the com-
posite fermion wave function, as supposed to 105 CPU
hours per data point using the sign trick alone. Moreover,
this “number trick” is particularly effective in controlling
error-bars at large LA enabling efficient calculation of the
Rényi entropy in the large LA limit. We note that analo-
gous approaches that resolve particle numbers have been
mentioned for studying entanglement in lattice systems
[30] [33] and a subtly different number trick was used in
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Ref.[34].
Wave-function.– Heuristically, a wavefunction that

models a spin polarized ν = 1/2 LLL nFL state com-
bines features of a Slater determinant Fermi sea and the
ν = 1/2 boson Laughlin state. Most previous numerical
studies use spherical geometry in which the Fermi sea
is modeled as closed filled shells of spherical harmonic
orbitals Y`m with ` = 0, 1, . . . `F , so (`F + 1)2 particles
fill `F + 1 shells. This has a Fermi level, but no clear
analog of a k-space Fermi surface. To reproduce a Fermi
surface with a variable shape, we instead used the torus
geometry with a periodic boundary condition (pbc). A
straightforward model state [27, 35], is given by

det
ij
eiki·Rj |Ψ1/2

L 〉 = det
ij
ti(dj)|Ψ1/2

L 〉 (5)

where |Ψ1/2
L 〉 is the boson Laughlin state, and Ri are

the non-commutive guiding-center coordinates that act
within a Landau level. Note that the translation op-
erator exp ik · Ri = ti(d) displaces particle i by da =
εabkb`

2
B , leading to the second form above. The pbc

requires that each displacement has the form NΦdi ∈
{mL1 + nL2} where the primitive pbc translations L1,
L2 define a unit cell with area 2πNΦ`

2
B with quantized

flux NΦ, and `2B = ~/|eB|. With a pbc, the more familiar
holomorphic polynomial factors (zi− zj) in the Laughlin
wavefuctions become holomorphic elliptic functions like
ϑ1(κ(zi − zj)|τ). The formulation of Ref.[36] in terms
of Jacobi elliptic functions ϑ1 treats the translations L1

and L2 differently, and we found it convenient to use an
equivalent form in terms of the Weierstrass σ function

σ(z) =
ϑ1(κz; τ)

κϑ′1(0; τ)
exp(i(κz)2/π(τ − τ∗)). (6)

Here κ = π/L1, L = (Lx + iLy)/
√

2`B is the linear
dimension of the system with L∗1L2 − L∗2L1 = 2πiNΦ,
and τ = L2/L1 is the modular parameter of the torus.
Note that complex quantities z, L are made dimen-
sionless by using a length unit

√
2`B (not `B) so the

usual disk-geometry Gaussian factor exp− 1
4r

2/`2B be-
comes exp−( 1

2z
∗z).

The holomorphic factor of the symmetric-gauge wave-
function for (5) is

( N !∑
P=1

(−1)PFP (z1, . . . , zN )
)
FCM (

∑
i

(zi − d̄))

FP ({zi}) =
∏
i<j

σ(zi − zj + dP (i) − dP (j))
2
∏
i

ed
∗
P (i)zi ,(7)

where FCM (z) (= σ(z)2) is the center of mass wave-
function, d = (dx + idy)/

√
2`B , and z = (x + iy)/

√
2`B

are complex distances and coordinates.
The wave-function in Eq. (7) requires explicit anti-

symmetrization of N ! terms, which for large N quickly

becomes prohibitive for Monte-Carlo calculations. In-
stead, we present a new expression that is inspired
by a spherical-geometry construction due to Jain and
Kamilla[37]. In analogy to Ref. [37], we move the trans-
lation operators inside the determinant, which can be
computed in O(N3) operations. Doing so reduces the
number of times they act on σ(zi−zk) (the relative part)
from 2(N−1) to N−1, and would break the pbc, as half
of their actions are lost. To compensate, we double each
di(tj):

FCF = det
i,j

(ed
∗
j zi

∏
k(6=i)

σ(zi − zk + 2(dj − d̄))×

FCM (
∑
i

(zi − d̄)). (8)

To complete the wave-functions a non-holomorphic expo-
nential factor e−

∑
i ziz

∗
i /2 has to be included. For conve-

nience, we have made a specific choice of the zeroes of the
coherent-state center-of-mass wave-function[36]. This re-
solves the two-fold topological degeneracy of the state.

The choice of the set of distinct values {ki}, where
kia = εbad

a
i /`

2
B corresponds to the choice of occupied

Bloch states in a free-fermion Slater determinant. For
the ν = 1/2 state, the choice of how to fill the “Fermi
sea”, is non-trivial, as the usual kinetic energy is com-
pletely quenched by the magnetic field, and a uniform
boost ki 7→ ki+k, all i, corresponds to a translation that
leaves the variational energy unchanged. It can be empir-
ically argued that clustering the ki as close to each other
as possible, while keeping them distinct, is the minimal
antisymmetric distortion of the ν = 1

2 Laughlin state. A
simple model Hamiltonian[38], that encodes this idea is

H =
~2

2mN

∑
i<j

|ki − kj |2 (9)

where m is the “CF mass”, and for a finite system we
choose the “Fermi sea” {ki} to minimize (9), which is
manifestly invariant under boosts, guaranteeing F1 =
−1[39–41], which is the only nonzero “Fermi-liquid pa-
rameter” of the model. The many-body momentum
quantum number is the average K = N−1

∑
i ki modulo

the pbc-allowed values of k. The effective model (9) is
the minimal modification of a free-Fermi gas to incorpo-
rate the required boost-invariance, and the ground-state
values of K that it predicts for finite-N closely track the
values found in exact diagonalization studies of the ν =
1
2 LLL system with Coulomb interactions and a pbc[38].
We chose a square pbc with N = 37, for which the Fermi-
sea configuration predicted by (9) has K = 0, like a
free-fermions system. We can use this set of “occupied”
momenta, shown in Fig. 1, for both the composite and
free fermion wave-functions.

Results.- - We obtained the second Rényi entropy S2

as a function of λ for both the free fermion gas and
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FIG. 2. Plot of S2/λ as a function of λ. Red corresponds
to free fermions, while blue (N = 37) and green (N = 137)
correspond to composite fermions at half-filling in the LLL.
Error bars indicate 95% confidence intervals. Dashed lines
are best linear fits of S2/λ to the form a + c log λ, where a
and c are fit parameters.

the composite fermion trial wave-function for ν = 1/2
state. Here LA is the linear dimension of the system and
kF =

√
10π/37 is the radius of the Fermi surface. The

results and the error bar are shown in Fig. 2. Our results
for the free fermion gas shown in red are in good agree-
ment with previous numerical results[18, 31] and hence
demonstrate reliability of our algorithm using the parti-
cle number trick. The ratio S2/λ is linear in log λ and
the linear fit results in 95% confidence level shown in the
red dashed line in Fig. 2 follows

S2[Ψ0] = (0.135± 0.01)λ log λ (10)

where Ψ0 denotes the free Fermi gas wave-function for the
set of momenta shown in Fig. 1. Comparing the results
Eq. (10) to Eq. (3) we confirm that our numerical results
for free fermions are consistent with the exact results
Eq. (2).

For the ν = 1/2 non-Fermi liquid state, the results
shown in blue in Fig. 2 again exhibit linear dependence
of S2/λ on log λ, i.e. multiplicative logarithmic violation
of the area law. However, the linear fit again at 95%
confidence level:

S2[Ψν=1/2] = (0.27± 0.02)λ log λ (11)

reveals that the coefficient is no longer given by the
“Widom formula”. The steeper slope for the non-Fermi
liquid state is evident even from the raw data. [42] As
a check for finite-size effects, we computed the entangle-
ment entropy at large λ = 1.73 for a large system size of
N = 137. The fact that this data points lands on top of
the the data points for the system size of N = 37 makes
it unlikely for the observed enhancement to be a finite
size effect. Curiously, the coefficient of the multiplicative
logarithmic correction term for ν = 1/2 non-Fermi liq-
uid is not only larger compared to that for free fermions,

but it appears to be double the value expected from the
“Widom formula” Eq. (2).

Discussion.– In summary, we calculated the second
Rényi entropy S2 of the ν = 1/2 composite fermion non-
Fermi liquid state captured by the trial wave-function.
We found the multiplicative logarithmic violation of the
area law with the same functional dependence on the lin-
ear dimension of the subregion, i.e., S2 ∝ λ log λ, as is
the case for free fermions but with a coefficient that is
roughly double what is found for free fermions. Our re-
sults support the conjecture that S2 ∝ λ log λ might be
the strongest form of area law violation in 2D made in
Ref. [24]. However, our results reveal a violation of the
Widom formula, in the form of a doubling of its coefficient
for the ν = 1/2 non-Fermi liquid state, in contrast to the
free fermion result obtained for exactly solvable models
of fermions coupled to discrete gauge fields in Ref. [43].

Our explicit calculation of entanglement entropy for
an established non-Fermi liquid state raises a number of
interesting questions. For example, what is the physical
significance of the coefficient of the LA logLA term in
the entanglement entropy of strongly correlated fermions
forming a non-Fermi liquid state? There is little litera-
ture on this coefficient for interacting fermions. While a
Gutzwiller-projected Fermi surface constrained to main-
tain one fermion per site showed little difference from free
fermions[23], Slater-Jastrow wave-functions for the inter-
acting Fermi gas without a magnetic field showed small
changes in the coefficient[31]. However, while Slater-
Jastrow wave-functions are often used to add correlation
effects and model conventional Fermi liquids, it is not
clear if the effect of the Jastrow factor is perturbative
as the S2 result of Ref. [31] does not extrapolate to free
fermion result in the limit of fermion residue Z → 1. It
will be interesting to use the particle number trick on a
d-wave metal wave-function which is proposed to be sta-
bilized by a ring-exchange Hamiltonian[44] in this con-
text. Another question is whether it is possible to gain
analytic insight into the enhancement of entanglement
due to strong correlation. Finally, the investigation of
entanglement spectra or shape dependence of entangle-
ment entropy[45] may reveal more insight into ν = 1/2
non-Fermi liquid state.
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