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Abstract
We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson

plus high transverse momentum (PT ) jet events produced at hadron colliders. We show that at

the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to

derive the Sudakov form factor. We compare the singular behavior of resummation calculation to

fixed order prediction in the case that Higgs boson and high PT jet are produced nearly back-to-

back in their transverse momenta, and find a perfect agreement. The phenomenological importance

of the resummation effect at the LHC is also demonstrated.
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Introduction. Higgs boson discovery at the CERN LHC [1, 2] has stimulated new area
of high energy physics research at the colliders, where the precision Higgs physics is at the
frontier. This includes Higgs production and decays to investigate the coupling between the
Higgs boson and all other particles. The correlation between Higgs and jet production at
the LHC will undoubtedly provide important information on the production and further
disentangle the electroweak coupling of Higgs boson [3–15]. The goal of this paper is to
build a theoretical framework to reduce the uncertainties in the Higgs plus jet production,
in particular, in the kinematics of back-to-back azimuthal angular correlation region. In this
region, the total transverse momentum of Higgs boson plus jet becomes much smaller than
the invariant mass, and the fixed order perturbative calculations suffer from singularities,
which will result in large theoretical uncertainties due to factorization/renormalization scale
uncertainties [16]. Therefore, we have to perform all order soft gluon resummation to make
reliable predictions, and to reduce the theoretical uncertainties.

QCD resummation for this process has its own interest in perturbative QCD. To deal
with the divergence in low transverse momentum hard processes, the so-called transverse
momentum, or Collins-Soper-Sterman (CSS), resummation is employed [17]. However, the
CSS resummation has been mainly applied to the color-neutral particle production, such
as inclusive vector boson W/Z and Higgs boson productions. Extension to jet productions
in the final state has been much limited. This is not only because of the technique issues
associated with the jets in the final state, but also because that the jets carry color and the
soft gluon interactions are more complicated than those for color neutral particle production.
Nevertheless, there have been progresses in the last few years on the CSS resummation
for dijet production in hadronic collisions [18–20]. In this paper, we investigate the CSS
resummation for Higgs boson plus one hard jet production,

A(P ) +B(P̄ ) → H + Jet +X , (1)

where two incoming hadrons carry momenta P and P̄ , respectively. Because the final state is
simpler than that of dijet production, the above process allows us to study the factorization
in great detail. Extension to W/Z boson plus jet production shall be straightforward, which
are phenomenologically important at the LHC as well.

In the calculations, we apply the effective theory to describe Higgs coupling to gluons in
the large top mass limit:

Leff = −
αs

12πv
F a
µνF

aµνH, (2)

where v is the vacuum expectation value and H the Higgs field, F µν the gluon field strength
tensor and a the color index. Our final resummation formula can be summarized as

d4σ

dyhdyjdP 2
Td

2q⊥
=

∑

ab

σ0

[

∫

d2~b⊥
(2π)2

e−i~q⊥·~b⊥Wab→Hc(x1, x2, b⊥) + Yab→Hc

]

, (3)

where yh and yj are rapidities for the Higgs boson and the jet, PT for the jet transverse

momentum, and ~q⊥ = ~Ph⊥ + ~PT for the total transverse momentum of Higgs and the jet.
The first term W contains all order resummation and the second term Y comes from the
fixed order corrections; σ0 represents normalization of the differential cross section. In this
paper, we will take the dominant gg → Hg channel as an example to demonstrate how to
derive the resummation for W term, which can be written as

Wgg→Hg (x1, x2, b) = Hgg→Hg(Q)x1fg(x1, µ = b0/b⊥)x2fg(x2, µ = b0/b⊥)e
−SSud(Q

2,b⊥) , (4)
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at next-to-leading logarithmic (NLL) level, where Q2 = s = x1x2S and represents the
hard momentum scale, b0 = 2e−γE , with γE being the Euler constant. fa,b(x, µ) are parton
distributions for the incoming partons a and b, and x1,2 are momentum fractions of the
incoming hadrons carried by the partons. Beyond the NLL, a C function associated with
the gluon distribution function will also be included. The Sudakov form factor can be written
as

SSud(Q
2, b⊥) =

∫ Q2

b2
0
/b2

⊥

dµ2

µ2

[

ln

(

Q2

µ2

)

A+B +D1 ln
1

R2

]

, (5)

where R represents the cone size for the jet. Here the parameters A, B, D1 can be expanded
perturbatively in αs. For gg → Hg channel, at one-loop order, we have A = CA

αs

π
, B =

−2CAβ0
αs

π
, and D1 = CA

αs

2π
. The hard coefficient H can be calculated order by order. From

the leading Born diagrams, we have H(0) = (s4 + t4 + u4 +m8
h) /(stu) [6, 7], where s = Q2,

t and u are usual Mandelstam variables for the partonic 2 → 2 process.
Comparing to the CSS resummation for inclusive Higgs boson production, we find that

the one-loop results for the coefficients A and B agree with those in Ref. [21]. This is because
both processes are gluon-gluon initiated processes, and these coefficients come from the gluon
splitting contributions. However, because of the final state jet in our case, additional soft
gluon radiation will contribute to a resummation factor depending on the jet size, represented
by the coefficient D1 in Eq. (5).

To derive the above resummation, we first calculate W (b) at the complete one-loop order,
and show that it can be factorized into the parton distributions and soft and hard factors.
The resummation is achieved by solving the associated evolution equations. The asymptotic
behavior at low imbalance transverse momentum q⊥ is calculated from the soft and collinear
gluon radiations at this order. This asymptotic result will be checked against the full per-
turbative calculations. Then, we will combine these contribution with those from virtual
graphs and collinear jet contributions to derive the one-loop result for W (b).

Asymptotic Behavior at Small-q⊥. The leading order calculations for the process of Eq. (1)
comes from the partonic process,

g + g → H + g ,

which predicts a Delta function at q⊥ = 0. At the next-to-leading order (NLO), the real
emission diagrams for g+g → H+jet+X will contribute to a singular behavior at small-q⊥,
in the associate production of Higgs boson and high PT jet, with additional parton radiation.
For the collinear gluon associated with the incoming gluon distribution, they can be easily
evaluated, and they are proportional to the gluon-to-gluon splitting kernel at one-loop order.
For the soft gluon radiation, we apply the soft gluon approximation in the limit of q⊥ ≪ Q,
and obtain the following expression,

∫

dD−1kg
(2π)D−12Ekg

δ(2)(q⊥ − kg⊥)

[

p1 · p2
p1 · kgp2 · kg

+
k1 · p2

k1 · kgp2 · kg
+

k1 · p1
k1 · kgp1 · kg

]

, (6)

where p1, p2 represent the momenta for incoming gluons, k1 for final state jet, and kg for the
radiated gluon. The above results will lead to soft divergence when Fourier transformed to
b⊥ space, for which we will apply the dimension regulation with D = 4−2ǫ. Not all the soft
gluon radiation contributes to the finite q⊥. In particular, if the gluon radiation is within
the final state jet, its contribution has to be excluded. To evaluate these contributions, we
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introduce a small offshellness (which is proportional to the cone size R) for k1 to exclude
the gluon radiation inside the jet cone, and further take the narrow jet approximation
(NJA) [22, 23], i.e, taking the limit of R → 0. In the NJA, this is equivalent to applying a
kinematic cutoff for the radiated gluon.

Adding the soft and collinear gluon radiation together, we derive the asymptotic behavior
at small-q⊥,

αsCA

2π2

1

q2⊥

∫

dx′
1dx

′
2

x′
1x

′
2

x′
1g(x

′
1)x

′
2g(x

′
2) [{δ(ξ2 − 1)ξ1Pgg(ξ1) + (ξ1 ↔ ξ2)}

+δ(ξ1 − 1)δ(ξ2 − 1)

(

2 ln
Q2

q2⊥
− 4β0 + ln

1

R2
+ ǫ

(

1

2
ln2

(

1

R2

)

+
π2

6

))]

, (7)

where ξ1 = x1/x
′
1, ξ2 = x2/x

′
2, Pgg is the gluon splitting kernel and β0 = (11 − 2Nf/3)/12,

with Nf being the number of effective light quarks. We have kept the ǫ = (4−D)/2 terms,
which will contribute when Fourier transforming to b⊥-space. In Eq. (7), the first term comes
from collinear gluon radiation. The most important contribution comes from the ln(Q2/q2⊥)
term which is the well-known Sudakov double logarithm in the low transverse momentum
limit. Because of the final state jet in the process, we also have a jet size dependent term,
similar to dijet production studied in Ref. [20].

It is important to check the above asymptotic behavior against the fixed order calculations
in the small transverse momentum limit q⊥ ≪ Q. In Fig. 1, we plot the comparisons between
Eq. (7) and those from the fixed order calculations. We show the q⊥-dependent differential
cross section in the low transverse momentum region for the typical kinematics at the LHC.
We focus on the gg → H + Jet production channel, and the jet transverse momentum is
in the range between 60 to 100 GeV. Both the Higgs boson and jet are produced in the
central rapidity region, with |y| < 0.5, and the jet size is set to be R = 0.5. The full NLO
calculation comes from the MCFM code [24], whereas the asymptotic result from Eq. (7).
In the numeric calculations, we have adopted the CT10 PDF set [25]. From this plot, we
can clearly see that the asymptotic behavior agrees well with the fixed order calculation
in the low q⊥ region. In the right panel of Fig. 1, we plot the comparison as function of
the azimuthal angle difference between the Higgs boson and the leading jet φ = φH − φj,
which is more relevant for experiment measurement. The back-to-back correlation region
corresponds to φ around π, where the total transverse momentum q⊥ → 0. Because of this
correspondence, again we find that the asymptotic expression agrees well with the fixed order
calculations around φ = π and they are divergent. In this region, the QCD resummation is
crucial to make reliable predictions, for which we will derive in the following sections.

One-loop calculation of W (b). To calculate the complete one-loop result for W (b⊥), we
have to take into account the following three contributions: (a) virtual graphs contribution
to gg → Hg; (b) real gluon contribution associated to the jet; (c), the collinear and soft
gluon radiation contribution to finite q⊥. Both (a) and (b) contribute to δ(2)(q⊥). All these
contributions contain soft divergences, which have to be cancelled out. In the end, we only
have collinear divergences associated with the incoming two gluons. To calculate (c), we
have to Fourier transform the q⊥-dependent expression of last section into b⊥-space.

Calculations of virtual graphs are available in the literature, and they can be written
as [6, 7, 26]

αsCA

2π

[

−
3

ǫ2
+

1

ǫ

(

2 ln
s

µ2
+

tu

sµ2

)

+ · · ·

]

, (8)
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FIG. 1: Higgs boson plus jet production from gg → H + jet channel at the LHC as functions

of total transverse momentum q⊥ (left) and the azimuthal angle difference φ (right) of the Higgs

boson and the leading jet. The dotted curves represent the result from the MCFM code, whereas

the dashed curves from asymptotic result of Eq. (7). For comparison, the resummed cross sections

are shown as the solid curves.

where for simplicity, we only kept the divergent terms. Collinear gluon associated with
the jet is also easy to carry out, which will depend on the jet algorithm. Following the
anti-kt algorithm, we obtain the following contribution for the gluon jet at the one-loop
order [22, 23]:

αsCA

2π

[

1

ǫ2
+

1

ǫ

(

2β0 − ln
P 2
TR

2

µ2

)

+
1

2
ln2

(

P 2
TR

2

µ2

)

− 2β0 ln
P 2
TR

2

µ2
+

67

9
−

3

4
π2−

23

54
Nf

]

, (9)

where the divergent and logarithmic terms are independent of jet algorithm, and the rest
of the finite terms depend on the algorithm [27]. We note that the above result includes
contributions from final state gluon splitting into a gluon pair or a quark-antiquark pair at
the NLO, via the initial state gluon-gluon fusion processes. At the NLO, we also need to
renormalize the effective ggH coupling, cf. Eq. (2), which yields the following contribution:

αsCA

2π

(

Q2

µ2

)−ǫ(

−
3

ǫ

)

2β0 . (10)

Here, we have set the renormalization scale as Q2 to simplify the final expression.
The Fourier transformation of the q⊥-dependent expression, cf. Eq. (7), to the b⊥-space,

cf. W (b⊥), contains both double pole (1/ǫ2) and single pole (1/ǫ) contributions in the
dimensional regularization scheme. Among them, the soft divergence is cancelled out by
those from Eqs.. (8) and (9). The collinear divergence in terms of (1/ǫ) ln(1/R) associated
with the final state jet is also cancelled out between the jet contributions from Eq. (9)
and the Fourier transformation of Eq. (7) in b⊥-space. In addition, the finite ln2(P 2

TR
2/µ2)

terms are cancelled out after summing over Eqs. (7), (8) and (9). The above cancellations
provide important cross checks for our derivations. Finally, there are only divergences coming
from the collinear divergences of the gluon distributions. After renormalizing the gluon
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distributions from the incoming hadrons, we obtain the finite contribution at one-loop order,

W (1)(b) =H(0)αsCA

2π

{

ln
b20
b2µ̄2

[δ(ξ2 − 1)ξ1Pgg(ξ1) + (ξ1 ↔ ξ2)] + δ(ξ1 − 1)δ(ξ2 − 1)

×

[

−

(

ln
Q2b2⊥
b20

)2

+

(

4β0 − ln
1

R2

)

ln
Q2b2⊥
b20

]}

+H(1)δ(ξ1 − 1)δ(ξ2 − 1) , (11)

where a common integral of the parton distributions as that in Eq. (7) is implicit but not
shown. In the above result, the leading and sub-leading logarithmic terms are evident, and
the remaining hard coefficient H(1) is

H(1) = H(0)αsCA

2π

[

ln2

(

Q2

P 2
T

)

+ 2β0 ln
Q2

P 2
TR

2
+ ln

1

R2
ln

Q2

P 2
T

− 2 ln
−t

s
ln

−u

s

+ ln2

(

t̃

m2
h

)

− ln2

(

t̃

−t

)

+ ln2

(

ũ

m2
h

)

− ln2

(

ũ

−u

)

+ 2Li2

(

1−
m2

h

Q2

)

+2Li2

(

t

m2
h

)

+ 2Li2

(

u

m2
h

)

+
67

9
+

π2

2
−

23

54
Nf

]

+ δH(1) , (12)

where t̃ = m2
h − t, ũ = m2

h − u, and δH(1) represents terms not proportional to H(0) and
can be found in Refs. [6, 7]. The above will enter into final resummation result as one-loop
correction to Eq. (4).

TMD Factorization and Resummation. In order to carry out the resummation, we factor-
ize the above one-loop results into the TMD parton distributions, and soft and hard factors,
following the CSS procedure [17]. In b⊥-space, this factorization can be written as

W (Q, b⊥) = x1 fg(x1, b⊥, ζ, µF , ρ)x2fg(x2, b⊥, ζ̄, µF , ρ)H
TMD
gg→Hg(Q, µF , ρ)Sgg→Hg(b⊥, µF , ρ) ,

where we have followed Ji-Ma-Yuan scheme to define the TMD gluon distribution fg [27]. In
this scheme, an off-light-cone vector v (v̄) is introduced to regulate the light-cone singularity,
ζ2 = (2v · P )2/v2 (and ζ̄2 = (2v̄ · P̄ )2/v̄2). The dependence on ρ = (2v · v̄)2/v2v̄2 and the
factorization scale µF cancel out among different factors. The TMD gluon distribution
is the same as that describes the low transverse momentum Higgs boson production in
hadronic collisions [27]. Therefore, we can use the results obtained there to carry out the
resummations associated with the incoming gluon distributions. In particular, an evolution
equation can be derived for the TMD distributions respect to ζ ,

∂

∂ ln ζ
fg(x, b⊥, ζ) = (K(b⊥, µ) +G(ζ, µ))× fg(x, b⊥, ζ) , (13)

where K and G are soft and hard parts in the evolution kernel. They obey the renor-
malization group equation with the so-called cusp anomalous dimension γK . The solution
of the above evolution follows the CSS formalism, which resums the large logarithms of
ln(ζ2b2⊥) [17, 27]. Final resummation results are obtained by setting ζ2 = ζ̄2 = ρQ2. Addi-
tional resummation effects come from the soft factor, which is defined as

Sgg→Hg = fabcfa′b′c′〈0|L
†
vad(b⊥)Lv̄be(b⊥)L

†
ncf(b⊥)Lnc′f(0)L

†
v̄b′e(0)Lva′d(0)|0〉 . (14)

This includes the soft gluon interactions between the final state jet defined in the n-direction
(along the jet) and the incoming patrons defined by the two vectors v and v̄. A renormal-
ization group equation for the soft factor can be calculated, and the anomalous dimension is
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found to be γ(s) = αsCA

2π

(

ln ρ2 + ln 1
R2

)

. Because of soft gluon interactions between the final
state jet and incoming partons, the anomalous dimension depends on the jet size, which
results into the D1 coefficient in the resummation form factor Eq. (5).

By combining the evolutions of the TMD gluon distributions and the soft factor, we arrive
at the final resummation results in Eq. (4). The coefficients in Eqs. (4) and (5) at one-loop
order can be obtained from the results in previous section. As we mentioned above, the
TMD gluon distributions in Higgs plus jet production are the same as those for inclusive
Higgs production. Therefore, the A coefficients in Eq. (4) follow that in Higgs resummation,
which solely come from the evolutions of the gluon distributions [17].

As an example, in Fig. 1, we show the resummation results, as compared to the fixed
order calculations. When Fourier transforming the b⊥-expression to obtain the transverse
momentum distribution, we follow the b∗ prescription of CSS resummation [17], and apply
the non-perturbative form factors following the parameterizations in Refs. [28]. The final
result is not sensitive to the choice of the non-perturbative form factor. In the numeric cal-

culations, we have used parameters A(1,2), B(1), D
(1)
1 and H(0,1) in the resummation formula

Eq. (4). All these coefficients are obtained from our one-loop calculation, except that of
A(2), for which we take from the resummation for inclusive Higgs production gg → H [21].
We would like to emphasize that H(1) correction is of order 1 in the kinematics shown in
Fig. 1, which highlights the importance of next-to-leading corrections. From these plots, we
can clearly see that the resummations are important in the kinematic region where the fixed
order calculations have singular behavior.

In the plots of Fig. 1, we include the NLO perturbative calculations (or, LO in q⊥ distribu-
tion) in the comparisons. It would be desirable to compare to the NNLO calculations which
are unfortunately not yet available. We notice that the inclusive cross section for Higgs plus
one jet production has recently been calculated at NNLO in Ref. [10]. We hope that in the
near future, these results can be made available to compute the differential cross sections in
q⊥ distribution or azimuthal angular distribution, from which we can further improve the
theoretical predictions in Fig. 1. The existing NLO calculations for Higgs boson plus two
jets production [24] could be added, after proper phase space integral and subtracting the
double counting contribution, to improve the prediction for large q⊥ or ∆φ away from π
region. It is however beyond the scope of this paper.

The preliminary experimental data on Higgs boson plus jet production have demonstrated
the powerful reach for Higgs physics at the LHC [13–15]. These data have been mainly
compared to parton shower Monte Carlo programs. The fixed order QCD calculations are
divergent in the back-to-back azimuthal correlation region around ∆φ ≈ π (see Fig. 1),
where all order resummation calculation is essential for making reliable theory predictions.
The combination of the resummation technique derived in this paper and the fixed order
calculations will provide high precision theory description of the associated production of
Higgs boson and high energy jet events for the distributions shown in Fig. 1 and various
other kinematical observables. This is of crucial importance for Higgs physics study at the
LHC. We will carry out a detailed phenomenological studies along this line in the future.

Conclusions. In Summary, we have derived all order soft gluon resummation for Higgs
boson plus high energy jet production. The expansion of our resummation formula agrees
well with the fixed order calculations in the low transverse momentum region of Higgs boson
and the jet, where we showed that resummation effects have to be included to have a reliable
prediction.

Our derivations are based on a complete one-loop perturbative calculation. The results
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have been cross checked in various respects. It demonstrates that the final resummation
formalism is consistent in the framework of CSS resummation. These results will provide
important guidelines for future developments in electroweak boson plus jet production pro-
cesses at the LHC. Extension to Higgs boson (or electroweak boson) plus two jets production
shall be followed as well, which is a potential channel to investigate the unique production
mechanism for Higgs boson at the collider.

In our calculations, we have applied the narrow jet approximation. This enables us to
derive explicitly the one-loop analytical results and show the complete cancellation of the
infrared divergences. This is important for demonstrating the factorization in the TMD for-
malism. The consistency in our derivation shall encourage future developments of a general
set-up for the final state jet without the NJA, which is undoubtedly a more challenging cal-
culation. Nevertheless, we expect the leading results will remain the same, which originate
from soft gluons radiated out of the initial state partons and the final state jet.

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231, and by
the U.S. National Science Foundation under Grant No. PHY-0855561 and PHY-1417326.
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