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We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate
unitarily. The interior spacetime appears in the sense of complementarity because of special features
revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The
relation between quantum mechanics and the equivalence principle is subtle, but they are still
consistent.

INTRODUCTION

Despite much effort, the relation between quantum me-
chanics and the spacetime picture of general relativity
has never been clear. The issue becomes particularly
prominent in black hole physics [1]. Quantum mechanics
suggests that the black hole formation and evaporation
processes are unitary—a black hole simply appears as
an intermediate resonance between the initial collapsing
matter and final Hawking radiation states [2]. Mean-
while, general relativity suggests that an observer falling
into a large black hole does not feel anything special at
the horizon. These two assertions are surprisingly hard
to reconcile. With naive applications of quantum field
theory on curved spacetime, one is led to the conclusion
that unitarity of quantum mechanics is violated [3] or an
infalling observer finds something dramatic (a firewall)
at the horizon [4–7].

In this letter, we argue that the resolution to this puz-
zle lies in how a semiclassical description of the system
arises from the microscopic theory of quantum gravity.
While a semiclassical description employs an exact space-
time background, the quantum uncertainty principle im-
plies that there is no such thing—there is an intrinsic un-
certainty for background spacetime for any finite energy
and momentum. This implies that at the microscopic
level there are many different ways to arrive at the same
background for the semiclassical theory, within the preci-
sion allowed by quantum mechanics. This is the origin of
the Bekenstein-Hawking entropy [8, 9]. The semiclassical
picture is obtained after coarse-graining these degrees of
freedom, which we call vacuum degrees of freedom [10].

We argue that much of the puzzle regarding unitary
evolution and the interior spacetime of a black hole arises
from peculiar features the vacuum degrees of freedom ex-
hibit when viewed from the semiclassical standpoint. In
particular, they show properties which we call extreme

relativeness and spacetime-matter duality. The first refers
to the fact that the spacetime distribution of these de-
grees of freedom changes when we adopt a different “ref-
erence frame.” This change occurs in a way that the an-
swers to any physical question are consistent with each
other when asked in different reference frames. Together

with the reference frame dependence of the semiclassical
degrees of freedom discussed earlier [11, 12], this com-
prises basic features of how general coordinate transfor-
mations work in the full theory of quantum gravity.
The second property is related to the following fact:

while the vacuum degrees of freedom are interpreted as
how the semiclassical spacetime is realized at the mi-
croscopic level, their interactions with semiclassical de-
grees of freedom make them look like thermal radiation.
In fact, these degrees of freedom are neither spacetime
nor matter/radiation, as indicated by the fact that their
spacetime distribution is frame dependent, and that their
detailed dynamics cannot be treated in semiclassical the-
ory. This situation reminds us of wave-particle duality—
a quantum object exhibits dual properties of waves and
particles while the “true” (quantum) description does not
fundamentally rely on either of these classical concepts.
The two properties described above allow us to avoid

the arguments in Refs. [4–6] and make the existence of
the black hole interior consistent with unitary evolution,
in the sense of complementarity [11] as envisioned in
Refs. [13, 14]. A notion of geometry carrying informa-
tion has also been considered recently in Ref. [15] in a
different model of black hole evolution; see also Ref. [16]
for early discussions. In our picture, we assume that a
black hole evaporates through Hawking radiation [9]; for
an alternative view, see Ref. [17].
In the rest of the letter, we present our picture us-

ing the example of a Schwarzschild black hole formed
by collapsing matter in 4-dimensional spacetime. More
detailed descriptions are given in the accompanying pa-
per [18].

DISTANT DESCRIPTION

Consider a quantum state representing a black hole of
mass M located at some place at rest, as described in
a distant reference frame. (We adopt the Schrödinger
picture throughout.) Because of the uncertainty prin-
ciple, such a state must involve a superposition of en-
ergy and momentum eigenstates. In particular, since a
black hole of massM will evolve after Schwarzschild time
∆t ≈ O(Ml2P) into a state representing a Hawking quan-
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tum and a smaller mass black hole, the state must involve
a superposition with

∆E ≈
1

∆t
≈ O

(

1

Ml2P

)

, (1)

where E is defined in the asymptotic region, and lP the
Planck length. Requiring that the position uncertainty
is comparable to the quantum stretching of the horizon
∆r ≈ O(1/M), where r is the Schwarzschild radial coor-
dinate, the momentum spread is ∆p ≈ O(1/Ml2P). This
gives an uncertainty of the kinetic energy much smaller
than ∆E, so the spread of the energy comes mostly from
a superposition of different rest masses: ∆E ≈ ∆M .
How many different independent ways are there to su-

perpose the energy eigenstates to arrive at the same black
hole geometry within this precision? We assume that
the Bekenstein-Hawking entropy, A/4l2P, gives the log-
arithm of this number (at the leading order in l2P/A),
where A = 16πM2l4P is the area of the horizon. The
nonzero Bekenstein-Hawking entropy implies that there
are exponentially many independent black hole vacuum

states in a small energy interval of Eq. (1):

S0 =
A

4l2P
+O

(

Aq

l2qP
; q < 1

)

, (2)

i.e. the states that do not have a field/string theoretic
excitation on the semiclassical black hole background and
in which the stretched horizon, located at r = 2Ml2P +
O(1/M) ≡ rs, is not excited.
Labeling these exponentially many states by k, which

we call the vacuum index, basis states for the general
microstates of a black hole of mass M (within the uncer-
tainty ∆M) can be given by

|Ψā a afar;k(M)〉 ≈ |ψāa;k(M)〉|φafar
(M)〉. (3)

Here, ā, a, and afar label the excitations of the stretched
horizon, in the zone (i.e. the region within the gravi-
tational potential barrier defined, e.g., as r ≤ RZ ≡
3Ml2P), and outside the zone (r > RZ), respectively, and
|ψāa;k(M)〉 and |φafar

(M)〉 are black hole and exterior
states. (Here, we have used the fact that k can be re-
garded as being mostly in r ≤ RZ; see later.) As we have
argued, the index k runs over 1, · · · , eS0 for the vacuum
states ā = a = afar = 0. In general, the range for k
depends on ā and a, but its dependence is higher order
in l2P/A so we mostly ignore it. This small dependence,
however, becomes relevant when we discuss negative en-
ergy excitations associated with Hawking emission.
Excitations here are defined as fluctuations with re-

spect to a fixed background, so their energies as well
as entropies can be either positive or negative, al-
though their signs must be the same. As discussed in
Refs. [19, 20], the contribution of the excitations to the
total entropy is subdominant in l2P/A. The total entropy

in the near black hole region, r ≤ RZ, is thus given by
S = A/4l2P at the leading order.
The fact that all the independent microstates with dif-

ferent k lead to the same geometry suggests that the
semiclassical picture is obtained after coarse-graining the
degrees of freedom represented by this index, the vacuum
degrees of freedom [10]. According to this picture, the
black hole vacuum state in the semiclassical description
is given by the density matrix

ρ0(M) =
1

eS0

eS0

∑

k=1

|Ψā=a=afar=0;k(M)〉〈Ψā=a=afar=0;k(M)|.

(4)
To obtain the response of this state to the operators in
the semiclassical theory, we may trace out the subsystem
on which they do not act. Denoting this subsystem by
C̄, the relevant reduced density matrix is

ρ̃0(M) = TrC̄ ρ0(M). (5)

Consistently with our identification of the origin of the
Bekenstein-Hawking entropy, we assume that this repre-
sents the thermal density matrix

ρ̃0(M) ≈
e−βHsc(M)

Tr e−βHsc(M)
; β =

{

1
TH

for r ≤ RZ,

+∞ for r > RZ,
(6)

where TH = 1/8πMl2P, and Hsc(M) is the Hamiltonian
of the semiclassical theory.
In standard semiclassical field theory, the density ma-

trix of Eq. (6) is obtained as a reduced density matrix by
tracing out the region within the horizon in the unique

global black hole vacuum state. Our view is that this
density matrix is obtained from a mixed state of exponen-
tially many pure states, arising from the coarse-graining
in Eq. (4). We stress that the information in the vacuum
index k is invisible in the semiclassical theory as it is al-
ready coarse-grained to obtain the theory; in particular,
the dynamics of the vacuum degrees of freedom cannot
be described in terms of Hsc(M).
The expression in Eq. (6) suggests that the spatial dis-

tribution of the information about k follows the thermal
entropy calculated using the local temperature:

T (r) ≃







TH
√

1−
2Ml2

P

r

for r ≤ RZ,

0 for r > RZ.
(7)

In particular, the region around the edge of the zone,
r ≤ RZ and r − 2Ml2P /≪Ml2P, contains O(1) bits of in-
formation about k.
Semiclassical operators in the zone act nontrivially on

both a and k indices; otherwise the maximal mixture in
Eq. (4) is not compatible with the thermality in Eq. (6).
Since the thermal nature is prominent only for modes
whose energies measured in the asymptotic region are

ω . TH, (8)
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this feature is significant only for such infrared modes.
For operators with Eq. (8), their actions on microstates
can be complicated, although they act on the coarse-
grained vacuum state of Eq. (4) as if it is the thermal
state in Eq. (6).
There is a simple physical picture behind this phe-

nomenon of “non-decoupling” of the a and k indices for
the infrared modes. As viewed from a distance, these
modes are “too soft” to be resolved clearly above the
background. Since the derivation of the semiclassical the-
ory involves coarse-graining over microstates in which the
energy stored in the region r . RZ has spreads of order
∆E ≈ 1/Ml2P, infrared modes with ω . TH ≈ O(1/Ml2P)
are not necessarily distinguished from “spacetime fluctu-
ations” of order ∆E.
The structure described above leads to the following

picture for black hole evaporation.1 Suppose a black hole
of mass M is in microstate k:

|Ψk(M)〉 = |ψk(M)〉|φI〉, (9)

where |ψk(M)〉 is the black hole state, with suppressed
excitation indices, and |φI〉 the exterior state. After a
timescale of t ≈ O(Ml2P), this state evolves due to Hawk-
ing emission as

|ψk(M)〉|φI〉 →
∑

i,a,k′

ckiak′ |ψa;k′(M)〉|φI+i〉, (10)

where |φI+i〉 is the state in which newly emitted Hawk-
ing quanta, labeled by i and having energy Ei, are added
to the appropriately time evolved |φI〉. The index a rep-
resents the fact that the black hole state has negative
energy excitations of energy −Ea around the edge of the
zone, created in connection with the Hawking emission;
the coefficients ckiak′ are nonzero only if Ei ≈ Ea (within
the uncertainty). The negative energy excitations then
propagate inward, and after a time of orderMl2P ln(MlP)
collide with the stretched horizon, making the black hole
states relax as

|ψa;k′(M)〉 →
∑

ka

dak
′

ka
|ψka

(M − Ea)〉. (11)

The combination of Eqs. (10, 11) yields

|ψk(M)〉|φI〉 →
∑

i,ki

αk
iki

|ψki
(M − Ei)〉|φI+i〉, (12)

where αk
iki

=
∑

a,k′ ckiak′dak
′

ki
, and we have used Ei = Ea.

This expression shows that information in the black hole
can be transferred to the radiation state i.

1 We focus on a single Hawking emission and ignore excitations
beyond those directly associated with the emission. For a more
complete discussion, see Ref. [18].

It is important that the negative energy excitations in
Eq. (10) come with negative entropies, so that each of the
processes in Eqs. (10, 11) is separately unitary. Specifi-
cally, as k and i run over all the possible values with a
being fixed, the index k′ runs only over 1, · · · , eS0(M−Ea),
the dimension of the space spanned by ka. This is an
example of the non-factorizable nature of the k and a
indices discussed after Eq. (3). This structure avoids
the firewall argument in Ref. [5]—unlike what is imag-
ined there, the physical Hilbert space is smaller than the
naive Fock space built on each k.
From the semiclassical standpoint, the emission of

Eq. (10) is viewed as occurring locally around the edge of
the zone, which is possible because the information about
the black hole microstate extends into the whole zone re-
gion. In this region, information stored in the vacuum
state, k, is transferred into that in modes afar 6= 0, which
have clear identities over the background spacetime. Due
to energy conservation, this process is accompanied by
the creation of ingoing negative energy excitations, which
are not entangled with the emitted Hawking quanta.
The discussion here indicates that the purifiers of the

emitted Hawking quanta are microstates which semiclas-
sical theory describes as a vacuum. Unlike what was
considered in Ref. [4], Hawking quanta are not modes
associated solely with one of the Rindler wedges in the
near horizon approximation (b modes in the notation of
Ref. [4]) nor outgoing Minkowski modes (amodes), which
would appear to have high energies for infalling observers.
This allows for avoiding the entropy [4] and typicality [6]
arguments for firewalls. Note that physics described here
need not introduce nonlocality in low energy field theory;
it can still respect causality in r > rs.
We emphasize that the vacuum degrees of freedom play

dual roles. While they represent how the semiclassical
spacetime is composed at the microscopic level, they also
appear as thermal radiation when probed in the semiclas-
sical theory. In fact, these degrees of freedom are neither
spacetime nor matter/radiation. In particular, their de-
tailed dynamics cannot be treated in semiclassical theory.
The above understanding of Hawking emission clari-

fies why the semiclassical calculation of Ref. [3] finds an
apparent violation of unitarity. At the microscopic level,
formation and evaporation of a black hole involve the
vacuum degrees of freedom. Since semiclassical theory is
incapable of describing their microscopic dynamics, the
description of black hole evolution in semiclassical theory
is necessarily non-unitary.
A similar analysis can also be performed for black hole

mining [21, 22]. See Ref. [18] for details.

INFALLING DESCRIPTION

Suppose we drop an object into a black hole. In a
distant reference frame, the semiclassical description of
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the object (in terms of a and afar) is applicable only un-
til it hits the stretched horizon, after which it is repre-
sented as excitations of the stretched horizon (in terms
of ā). The information about the fallen object will then
stay there, at least, for the scrambling time of order
Ml2P ln(MlP) [23] before being transferred to k. On the
other hand, the equivalence principle says that the falling
object does not feel anything special when it crosses the
horizon. How can these two pictures be consistent?
The idea of complementarity is that the infalling ob-

ject is still described using low energy language after it
crosses the Schwarzschild horizon by making an appro-
priate reference frame change. Here we consider a class
of reference frames which reveal the spacetime structure
near the Schwarzschild horizon in the clearest form. We
call them infalling reference frames.
Let the spatial origin p0 of a reference frame follow a

timelike geodesic released from rest at r = r0, with r0 −
2Ml2P &Ml2P. According to complementarity, the system
described in this reference frame does not have a (hot)
stretched horizon at the location of the Schwarzschild
horizon when p0 crosses it; the region around p0 appears
approximately flat up to small curvature effects.
In this description, a “horizon” signaling the break-

down of the semiclassical description is expected to ap-
pear in the past-directed and inward directions from p0.
In analogy with the case of a distant frame description,
we denote basis states for the general microstates as

|Ψᾱ α αfar;κ(M)〉, (13)

where ᾱ labels the excitations of the “horizon,” and α,
and αfar the semiclassical excitations near and far from
the black hole, respectively; κ is the vacuum index.
The complementarity transformation provides a map

between the states in Eq. (3) and those in Eq. (13). While
the general form of this transformation can be compli-
cated, we may consider, based on the analysis of an in-
falling object, that a portion of the α index representing
interior excitations is transformed into the ā index (and
vice versa). Note that the amount of information needed
to reconstruct the interior (in the semiclassical sense) is
much smaller than the Bekenstein-Hawking entropy—the
logarithm of the dimension of the relevant Hilbert space
is of order (A/l2P)

q with q < 1.
Where are the κ degrees of freedom located? We ex-

pect that most are in the region close to the “horizon”;
in particular, the number of κ degrees of freedom within
a distance sufficiently smaller than Ml2P from p0 is of
O(1), since the time and length scales characterizing lo-
cal deviations from Minkowski space are of order Ml2P
there. This invites a question: how can this picture be
consistent with that in the distant reference frame, which
has a very different spacetime distribution of the vacuum
degrees of freedom?
To see a nontrivial consistency between the two pic-

tures, consider detectors hovering at a constant r with

r − 2Ml2P ≪ Ml2P. In a distant description, the spatial
density of the microscopic information in k is large there,
so that these detectors can be used for black hole min-
ing. The rate of extracting information, however, is still
of order one qubit per Schwarzschild time t ≈ O(Ml2P)
per channel [22]—the acceleration of information extrac-
tion occurs not because of a higher rate in each channel
but because of an increased number of available channels.
This implies that each single detector, which we define
to act on a single channel, “clicks” once per t ≈ O(Ml2P).
In an infalling reference frame, the density of the mi-

croscopic information in κ is small at the detector loca-
tion, at least when p0 passes nearby. The rate of extract-
ing information thus cannot be much faster than 1/Ml2P
around p0, reflecting the fact that the spacetime appears
approximately flat there. This, however, is still consis-
tent with the distant description. By adopting the near-
horizon Rindler approximation, one can show that when
viewed from the infalling reference frame, the detector
clicks only once in each time/space interval of

∆T ≈ ∆Z ≈ O(Ml2P), (14)

around p0 [18]. This is what we expect from the equiv-
alence principle: the spacetime appears flat up to cur-
vature effects with lengthscale Ml2P. While the detector
clicks of order ln(MlP) times within the causal patch of
the infalling frame, these clicks occur at distances of or-
der Ml2P away from p0, where we expect a higher density
of κ degrees of freedom.
The two descriptions are thus consistent. It is strik-

ing that the microscopic information about a black hole
exhibits this level of reference frame dependence, a phe-
nomenon we refer to as extreme relativeness.

OTHER REFERENCE FRAMES

We now discuss a reference frame whose origin follows a
timelike geodesic released from rest at r = r0, where r0 is
close to the Schwarzschild horizon, r0−2Ml2P ≪Ml2P. In
the case of r0−2Ml2P &Ml2P, we found that the detector-
click time/length scales are given by Eq. (14), despite the
fact that the detector clicks at a much higher rate in its
own frame. Technically, this was due to a huge relative
boost between p0 and the detector when they approach.
Here, however, the relevant boost is not as large, and the
detector-click time/length scales appear as

∆T ≈ ∆Z ≪Ml2P. (15)

Since each detector click extracts an O(1) amount of
information from spacetime, which we expect not to oc-
cur in Minkowski space, this implies that the spacetime
as viewed from this reference frame is not approximately
Minkowski over the lengthscale Ml2P when p0 crosses the
Schwarzschild horizon. We interpret this to mean that
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in this reference frame, the “horizon” is at a distance
of order ∆Z away from p0, so that detector clicks oc-
cur near or “on” this surface. Since we expect that the
microscopic information is located near and on the “hori-
zon,” there is no inconsistency for the clicks to extract
information from the black hole.
One might worry that in this reference frame, space-

time near the Schwarzschild horizon does not appear
large, ≈ O(Ml2P), nearly flat space. However, the ex-

istence of an infalling reference frame discussed before
ensures that an infalling physical observer sees a large
black hole interior. The analysis here simply says that
the spacetime around the Schwarzschild horizon is not
always described as a large nearly flat region, even in ref-
erence frames falling freely into the black hole.
We finally discuss (non-)relations of black hole mining

and the Unruh effect [24] in Minkowski space. It is often
thought that these two reveal the same physics, which
would mean the existence of a “horizon” in an inertial

frame description of Minkowski space. This is, however,
not true. Since the equivalence principle can make a
statement only about a point at a given moment in a
given reference frame, while a system in quantum me-
chanics is specified by a state which encodes global infor-
mation on the equal-time hypersurface, there is no reason
that physics of the two systems must be similar beyond a
point in space. In particular, the inertial frame descrip-
tion of Minkowski space does not have a “horizon,” so
a detector reacts very differently to blueshifted Hawking
radiation and Unruh radiation in Minkowski space—it
extracts microscopic information about spacetime in the
former case, while it does not in the latter. The relation
between quantum mechanics and the equivalence princi-
ple seems subtle, but they are consistent.
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