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We derive a microscopic expression for the mechanical pressure P in a system of spherical active
Brownian particles at density ρ. Our exact result relates P , defined as the force per unit area on
a bounding wall, to bulk correlation functions evaluated far away from the wall. It shows that (i)
P (ρ) is a state function, independent of the particle-wall interaction; (ii) interactions contribute
two terms to P , one encoding the slow-down that drives motility-induced phase separation, and the
other a direct contribution well known for passive systems; (iii) P is equal in coexisting phases. We
discuss the consequences of these results for the motility-induced phase separation of active Brownian
particles, and show that the densities at coexistence do not satisfy a Maxwell construction on P .
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Much recent research addresses the statistical physics
of active matter, whose constituent particles show au-
tonomous dissipative motion (typically self-propulsion),
sustained by an energy supply. Progress has been made
in understanding spontaneous flow [1] and phase equilib-
ria in active matter [2–6], but as yet there is no clear
thermodynamic framework for these systems. Even the
definition of basic thermodynamic variables such as tem-
perature and pressure is problematic. While “effective
temperature” is a widely used concept outside equilib-
rium [7], the discussion of pressure, P , in active matter
has been neglected until recently [8–14]. At first sight,
because P can be defined mechanically as the force per
unit area on a confining wall, its computation as a statis-
tical average looks unproblematic. Remarkably though,
it was recently shown that for active matter the force on a
wall can depend on details of the wall-particle interaction
so that P is not, in general, a state function [15].

Active particles are nonetheless clearly capable of
exerting a mechanical pressure P on their containers.
(When immersed in a space-filling solvent, this becomes
an osmotic pressure [8, 10].) Less clear is how to calcu-
late P ; several suggestions have been made [9–12] whose
inter-relations are, as yet, uncertain. Recall that for sys-
tems in thermal equilibrium, the mechanical and ther-
modynamic definitions of pressure (force per unit area
on a confining wall, and −(∂F/∂V )N for N particles in
volume V , with F the Helmholtz free energy) necessarily
coincide. Accordingly, various formulae for P (involving,
e.g., the density distribution near a wall [16], or corre-
lators in the bulk [17, 18]) are always equivalent. This
ceases to be true, in general, for active particles [11, 15].

In this Letter we adopt the mechanical definition of P .
We first show analytically that P is a state function, in-
dependent of the wall-particle interaction, for one impor-
tant and well-studied class of systems: spherical active

Brownian particles (ABPs) with isotropic repulsions. By
definition, such ABPs undergo overdamped motion in re-
sponse to a force that combines an arbitrary pair interac-
tion with an external forcing term of constant magnitude
along a body axis; this axis rotates by angular diffusion.
While not a perfect representation of experiments (par-
ticularly in bulk fluids, where self-propulsion is created
internally and hydrodynamic torques arise [19]), ABPs
have become the mainstay of recent simulation and theo-
retical studies [3, 5, 6, 20–24]. They provide a benchmark
for the statistical physics of active matter, and a simpli-
fied model for the experimental many-body dynamics of
autophoretic colloidal swimmers, or other active systems,
coupled to a momentum reservoir such as a supporting
surface [24–29]. (We comment below on the momentum-
conserving case.) By generating large amounts of data
in systems whose dynamics and interactions are precisely
known, ABP simulations are currently better placed than
experiments to answer fundamental issues concerning the
physics of active pressure, such as those raised in [9, 10].

Our key result exactly relates P to bulk correlators,
powerfully generalizing familiar results for the passive
case. The pressure for ABPs is the sum of an ideal-gas
contribution and a non-ideal one stemming from inter-
actions. Crucially, the latter results from two contribu-
tions: one is a standard, ‘direct’ term (the density of
pairwise forces acting across a plane), which we call PD,
while the other, ‘indirect’ term, absent in the passive
case, describes the reduction in momentum flux caused
by collisional slowdown of the particles. For short-ranged
repulsions and high propulsive force, PD becomes impor-
tant only at high densities; the indirect term dominates
at intermediate densities and is responsible for motility-
induced phase separation (MIPS) [2–4]. The same calcu-
lation establishes that, for spherical ABPs (though not
in general [15]) P must be equal in all coexisting phases.
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We further show that our ideal and indirect terms to-
gether form exactly the ‘swim pressure’, PS(ρ) at den-
sity ρ, previously defined via a force-moment integral
in [9, 10], and moreover that (in 2D) PS is simply
ρv(0)v(ρ)/(2Dr), where v(ρ) is the mean propulsive speed
of ABPs and Dr their rotational diffusivity. We interpret
this result, and show that (for PD = 0) the mechanical
instability, dPS/dρ = 0, coincides exactly with a diffu-
sive one previously found to cause MIPS among particles
whose interaction comprises a density-dependent swim
speed v(ρ) [2–4]. We briefly explain why this correspon-
dence does not extend to phase equilibria more generally,
deferring a full account to a longer paper [33].

To calculate the pressure in interacting ABPs, we fol-
low [15] and consider the dynamics in the presence of
an explicit, conservative wall-particle force Fw. For sim-
plicity, we work in 2D, and consider periodic boundary
conditions in y and confining walls parallel to ey = (0, 1).
We start from the standard Langevin dynamics of ABPs
with bare speed v0, interparticle forces F and unit mo-
bility [5, 6, 34]:

ṙi = v0u(θi) + Fw(xi)ex +
∑
j 6=i

F (rj − ri) +
√

2Dtηi ,

θ̇i =
√

2Drξi .

(1)

Here ri(t) = (xi, yi) is the position, and θi(t) the orien-
tation, of particle i at time t; u(θ) = (cos(θ), sin(θ));
Fw = ‖Fw‖ is a force acting along the wall normal
ex = (1, 0); Dt is the bare translational diffusivity;
and ηi(t) and ξi(t) are zero-mean unit-variance Gaussian
white noises with no correlations among particles.

Following standard procedures [2, 3, 35, 36] this leads
to an equation for the fluctuating distribution function

ψ̂(r, θ, t) whose zeroth, first, and second angular harmon-

ics are the fluctuating particle density ρ̂ =
∫
ψ̂ dθ; the x-

polarization P̂ =
∫
ψ̂ cos(θ) dθ; and Q̂ =

∫
ψ̂ cos(2θ) dθ,

which encodes nematic order normal to the wall:

˙̂
ψ = −∇·

((
v0u(θ) + Fw(x)ex +

∫
F (r′ − r)ρ̂(r′) d2r′

)
ψ̂
)

+Dr∂
2
θ ψ̂ +Dt∇2ψ̂ +∇·

(√
2Dtψ̂η

)
+ ∂θ

(√
2Drψ̂ξ

)
,
(2)

where η(r, t) and ξ(r, t) are δ-correlated, zero-mean, and
unit-variance, Gaussian white noise fields. In steady-
state, the noise-averages ρ = 〈ρ̂〉, P = 〈P̂〉, and Q = 〈Q̂〉
are, by translational invariance, functions of x only, as is
the wall force Fw(x) [37]. Integrating (2) over θ, and then
averaging over noise in steady state gives ∂xJ = 0, with
J the particle current. For any system with impermeable
boundaries, J = 0. Writing this out explicitly gives:

0 = v0P + Fwρ−Dt∂xρ+ I1(x) , (3)

I1(x) ≡
∫
Fx(r′ − r)〈ρ̂(r′)ρ̂(r)〉d2r′ . (4)

Applying the same procedure to the first angular har-

monic gives

DrP = −∂x
[v0

2
(ρ+Q) + FwP −Dt∂xP + I2(x)

]
, (5)

I2(x) ≡
∫
Fx(r′ − r)〈ρ̂(r′)P̂(r)〉d2r′ . (6)

Note that the integrals I1 and I2 defined in (4) and (6)
are, by translational invariance, functions only of x.

The mechanical pressure on the wall is the spatial inte-
gral of the force density exerted upon it by the particles.
The wall force obeys Fw = −∂xUw where an origin is
chosen so that Uw is non-zero only for x > 0. The wall
is confining, i.e. Fwρ→ 0 for x� 0, whereas x = Λ� 0
denotes any plane in the bulk of the fluid, far from the
wall. By Newton’s third law, the pressure is then

P = −
∫ ∞

Λ

Fw(x)ρ(x) dx , (7)

In (7) we now use (3) to set −Fwρ = v0P −Dt∂xρ+ I1:

P = v0

∫ ∞

Λ

P(x) dx+Dtρ(Λ) +

∫ ∞

Λ

I1(x) dx . (8)

We next use (5), in which P and Q vanish in the bulk and
all terms vanish at infinity, to evaluate

∫
P dx, giving:

P =
v0

Dr

(v0

2
ρ(Λ) + I2(Λ)

)
+Dtρ(Λ) +

∫ ∞

Λ

I1(x) dx . (9)

Using Newton’s third law, the final integral in (9) takes a
familiar form, describing the density of pair forces acting
across some plane through the bulk (far from any wall):∫

x>Λ

dx

∫
x′<Λ

d2r′ Fx(r′ − r)〈ρ̂(r′)ρ̂(r)〉 ≡ PD . (10)

Thus in the passive limit (v0 = 0) we recover in PD the
standard interaction part in the pressure [18]. We call PD

the “direct” contribution; it is affected by activity only
through changes to the correlator. Activity also enters
(via v0) the well-known ideal pressure term [9, 10, 13, 15]:

P0 ≡
(
Dt +

v2
0

2Dr

)
ρ(Λ) . (11)

Having set friction to unity in (1), Dt = kBT , so that
within P0 (only) activity looks like a temperature shift.

Most strikingly, activity in combination with interac-
tions also brings an “indirect” pressure contribution

PI ≡
v0

Dr
I2(Λ) (12)

with no passive counterpart. Here I2(Λ) is again a wall-
independent quantity, evaluated on any bulk plane x =
Λ� 0. We discuss this term further below.

Our exact result for mechanical pressure is finally

P = P0 + PI + PD (13)
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with these three terms defined by (11), (12), and (10),
respectively. P is thus for interacting ABPs a state func-
tion, calculable solely from bulk correlations and inde-
pendent of the particle-wall force Fw(x). Because the
same boundary force can be calculated using any bulk
plane x = Λ, it follows that, should the system undergo
phase separation, P is the same in all coexisting phases
[37]. This proves for ABPs an assumption that, while
plausible [10, 38], is not obvious, and indeed can fail for
particles interacting via a density-dependent swim speed
rather than direct interparticle forces [15].

Notably, although ABPs exchange momentum with a
reservoir, (1) also describes particles swimming through
a momentum-conserving bulk fluid, in an approximation
where inter-particle and particle-wall hydrodynamic in-
teractions are both neglected. So long as the wall inter-
acts solely with the swimmers, our results above continue
to apply to what is now the osmotic pressure.

The physics of the indirect contribution PI is that in-
teractions between ABPs reduce their motility as the
density increases. The ideal pressure term P0 normally
represents the flux of momentum through a bulk plane
carried by particles that move across it (as opposed to
those that interact across it) [17]. In our overdamped
system one should replace in the preceding sentence ‘mo-
mentum’ with ‘propulsive force’ (plus a random force as-
sociated with Dt). Per particle, the propulsive force is
density-independent, but the rate of crossing the plane
is not. Accordingly we expect the factor v2

0 in (11) to
be modified by interactions, with one factor v0 (force or
momentum) unaltered, but the other (speed) replaced by
a density-dependent contribution v(ρ) ≤ v0:

P0 + PI =

(
Dt +

v0v(ρ)

2Dr

)
ρ . (14)

This requires the mean particle speed to obey

v(ρ) = v0 + 2I2/ρ . (15)

Remarkably, (14) and (15) are exact results, where (15) is
found from the mean speed of particle i in bulk, v = v0 +
〈u(θi)·

∑
j 6=i F (rj−ri)〉. To see why this average involves

I2, note that the system is isotropic in bulk, so x and y
can be interchanged in I2(x), and that cos(θ) ≡ u·ex.

Relation (6) then links v to I2 via the 〈ρ̂P̂〉 correlator,
which describes the imbalance of forces acting on an ABP
from neighbors in front and behind.

Furthermore, the self-propulsive term in (14) is exactly
the ‘swim pressure’ PS of [9, 10]:

v0v(ρ)

2Dr
ρ = PS ≡

ρ

2
〈r·F a〉 (16)

with F a = v0u a particle’s propulsive force and r its po-
sition. (The particle mobility v0/F

a = 1 in our units.)
The equivalence of (12), (14), and (16) is proven analyti-
cally in [39] and confirmed numerically in Fig. 1 for ABP
simulations performed as in [20, 21].
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Figure 1. Numerical measurements of P0 + PI, PS, and
PD in single-phase ABP simulations at Péclet number Pe
≡ 3v0/(Drσ) = 40, where σ is the particle diameter. Ex-
pressions (12), (14), and (16) for P0 +PI and PS show perfect
agreement. Also shown is data for Pe = 20, unscaled and
rescaled by factor 2. This confirms that PS = P0+PI is almost
linear in Pe; small deviations arise from Pe-dependence of the
correlators. In red is PD for Pe = 20, 40, with no rescaling.
Pe was varied using Dr, at fixed v0 and with Dt = Drσ

2/3.
Solid lines are fits to piecewise parabolic (PS) and exponential
(PD) functions used in the semi-empirical equation of state.
ρ0 is a near-close-packed density at which v(ρ) vanishes and
ρ̃ is the treshold density above which PD > PS. See [39] for
details.

Thus for Dt = 0, (13) may alternatively be rewritten
as P = PS + PD [9, 10]. Together, our results confirm
that PS, defined in bulk via (16), determines (with PD)
the force acting on a confining wall. This was checked
numerically in [9] but is not automatic [15]. Moreover,
our work gives via (14) an exact kinetic expression for PS

with a clear and simple physical interpretation in terms
of the transport of propulsive forces. This illuminates
the nature of the swim pressure PS and extends to finite
ρ the limiting result PS = P0 [9, 10].

The connections made above are our central findings;
they extend statistical thermodynamics concepts from
equilibrium far into ABP physics. Before concluding, we
ask how far these ideas extend to phase equilibria.

In the following we ignore for simplicity the Dt term
(negligible in most cases [3, 5, 20, 34]). Then, assum-
ing short-range repulsions, we have PS = ρv0v(ρ)/(2Dr),
with v(ρ) ' v0(1−ρ/ρ0) and ρ0 a near-close-packed den-
sity [5, 6, 20]. PD should scale as σρv0S(ρ/ρ0), where
σ is the particle diameter and the function S diverges
at close packing; here the factor v0 is because propul-
sive forces oppose repulsive ones, setting their scale [10].
Figure 1 shows that both the approximate expression for
PS (with a fitted ρ0 ' 1.19 roughly independent of Pe),
and the scaling of PD, hold remarkably well. Defining a
threshold value ρ̃ by PS(ρ̃) = PD(ρ̃) (see Fig. 1), it follows
that at large enough Péclet number, Pe = 3v0/(Drσ), PS

dominates completely for ρ < ρ̃, with PD serving only
to prevent the density from moving above the ρ̃ cutoff.
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When ρ < ρ̃, PD is negligible; the criterion P ′
S(ρ) < 0,

used in [10, 38] to identify a mechanical instability, is
then via (16) identical to the spinodal criterion (ρv)′ < 0
used to predict MIPS in systems whose sole physics is a
density-dependent speed v(ρ) [2, 3]. Thus, for ABPs at
large Pe, the mechanical theory reproduces one result of
a long-established mapping between MIPS and equilib-
rium colloids with attractive forces [2, 3].

We next address the binodal densities of coexist-
ing phases. According to [2, 3], particles with speed
v(ρ) admit an effective bulk free-energy density f(ρ) =
kBT

[
ρ(ln ρ− 1) +

∫ ρ
0

ln v(u) du
]
. (Interestingly, the

equality of P in coexisting phases is equivalent at high
Pe and ρ < ρ̃ to the equality of kBT log(ρv), which is the
chemical potential in this ‘thermodynamic’ theory [2, 4].)
The binodals are then found using a common tangent
construction (CTC, i.e., global minimization) on f , or
equivalently an equal-area Maxwell construction (MC)
on an effective thermodynamic pressure Pf = ρf ′ − f ,
which differs from P [11]. Formally, f is a local approxi-
mation to a large-deviation functional [40], whose nonlo-
cal terms can (in contrast to equilibrium systems) alter
the CTC or MC [11, 20]; we return to this issue below.

An appealing alternative is to apply the MC to the
mechanical pressure P itself; this was, in different lan-
guage, proposed in [38]. (The equivalence will be de-
tailed in [33].) It amounts to constructing an effective
free-energy density fP (ρ) 6= f , defined via P = ρf ′P −fP ,
and using the CTC on fP . However, fP has no clear
link to any large deviation functional [40]; and since it
differs from f , these approaches generically predict dif-
ferent binodals.

To confirm this, we turn to the large Pe limit; here, for
ABPs with v(ρ) = v0(1−ρ/ρ0) and ρ̃ = ρ0, we can explic-
itly construct f(ρ) (and hence Pf (ρ)) alongside P (ρ) (and
hence fP (ρ)), using our hard-cutoff approximation (i.e.,
a constraint ρ < ρ̃). All four functions are plotted in [39];
the two distinct routes indeed predict different binodals
at high Pe (see Fig. 2) [42]. Each approach suffers its own
limitations. That via f (or Pf ) appears more accurate,
but neglects non-local terms that can alter the binodals:
although f ′(ρ) remains equal in coexisting phases, Pf is
not equal once those terms are included [11]. The most
serious drawback of this approach, currently, is that it
cannot address finite Pe, where PD no longer creates a
sharp cutoff. Meanwhile the ‘mechanical’ route captures
the equality of P in coexisting phases but unjustifiably
assumes the MC on P , asserting in effect that fP , and not
f , is the effective free energy [40]. Nonlocal corrections
[43] are again neglected.

At finite Pe where the crossover at ρ̃ is soft, (13) shows
how PI and PD compete, giving Pe-dependent binodals
(see Fig. 2). To test the predictions of the mechanical
approach (equivalent to [38]), we set PD = σρv0S(ρ/ρ0)
as above, finding the function S by numerics on single-
phase systems at modest Pe (see Fig. 1). Adding this
to PS (assuming PS ∝ Pe scaling) gives P = P (ρ,Pe).
At each Pe the binodal pressures and densities do lie

Figure 2. Simulated coexistence curves (binodals) for ABPs
(red), and those calculated via the Maxwell construction
(black) on the mechanical pressure P using the semi-empirical
equation of state for PS and PD fitted from Fig. 1. Dashed
lines: predicted high Pe asymptotes for the binodals calcu-
lated via f or Pf (lower), and calculated via P or fP (upper).
Inset: measured binodal pressures and densities (diamonds)
fall on the equation-of-state curves but do not match the MC
values (horizontal dashed lines). Stars show the P (ρ) relation
across the full density range from simulations at Pe = 40 and
Pe = 100. The latter includes two metastable states at low
density (high ρ0/ρ) that are yet to phase separate.

on this equation of state, validating its semi-empirical
form; but they do not obey the Maxwell construction on
P , which must therefore be rejected (see Fig. 2, inset).
We conclude that, despite our work and that of [38], no
complete theory of phase equilibria in ABPs yet exists.

In summary, we have given in (10)-(13) an exact ex-
pression for the mechanical pressure P of active Brownian
spheres. This relates P directly to bulk correlation func-
tions and shows it to be a state function, independent
of the wall interaction, something not true for all active
systems [15]. As well as an ideal term P0, and a direct in-
teraction term PD, there is an indirect term PI caused by
collisional slowing down of propulsion. We established an
exact link between P0 + PI and the so called ‘swim pres-
sure’ [10], allowing a clearer interpretation of that quan-
tity. We showed that when MIPS arises in the regime of
high Pe = 3v0/(Drσ), the mechanical (P ′ < 0 [10]) and
diffusive (f ′′ < 0 [2, 3]) instabilities coincide. That equiv-
alence does not extend to the calculation of coexistence
curves, for reasons we have explained. For simplicity we
have worked in 2D; generalization of our results to 3D is
straightforward [33] but notationally cumbersome.

The established description of MIPS as a diffusive in-
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stability [2, 3, 11, 20] is fully appropriate in systems
whose particles are ‘programmed’ to change their dy-
namics at high density (e.g., via bacterial quorum sens-
ing [44, 45]), but it is not yet clear whether the same
theory, or one based primarily on the mechanical pres-
sure P , is better founded for finite-Pe phase equilibria in
ABPs whose slowdown is collisional. Meanwhile, our ex-
act results for P in these systems add significantly to our
growing understanding of how statistical thermodynamic
concepts can, and cannot, be applied in active materials.
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