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Abstract 

We present a simple and efficient approach to evaluate the formation energy and, in particular, 

the ionization energy ( ) of charged defects in two-dimensional (2D) systems using the 

supercell approximation. So far, first-principles results for such systems can scatter widely due to 

the divergence of the Coulomb energy with vacuum dimension, denoted here as . Numerous 

attempts have been made in the past to fix the problem under various approximations. Here, we 

show that the problem can be resolved without any such assumption and a converged  can be 

obtained by an extrapolation of the asymptotic  expression at large  (with a fixed lateral area 

) back to the value at 0. Application to defects in monolayer boron nitride reveal that 

defects in 2D systems can be unexpectedly deep, much deeper than the bulk.  
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Defect physics is at the heart of semiconductor physics [1], as the electronic and 

optoelectronic properties of a semiconductor are often determined by defects, with effects 

ranging from providing free carriers to acting as undesirable carrier traps and/or non-radiative 

recombination centers. Recently, the development of two-dimensional (2D) semiconductors such 

as transition metal dichalcogenides [2,3], boron nitride [3-5], and phosphorene [6-8], has 

attracted considerable attention. Different from their 2D predecessor, graphene, these materials 

all have non-zero band gaps comparable to those of ordinary semiconductors such as Si and 

GaAs. This has raised the expectation that one may replace traditional semiconductors by 2D 

materials with drastically reduced size. However, one still has to demonstrate that the defect 

behavior in such 2D materials is not significantly different from that of ordinary semiconductors. 

In particular, to apply device concepts from existing technologies, one must find adequate 

dopants which can be ionized near room-temperature to provide the desired free carriers. This 

has prompted an intense study of defect properties in 2D materials including a number of first-

principles calculations, for example, for monolayer BN [9,10], MoS2 [11,12], GaN [13], AlN 

[14], GaS/GaSe [15], and SnS2 [16]. 

The key measure of a dopant performance is its ionization energy (IE), i.e., the energy 

required to free electrons or holes from the dopants into the conduction or valence bands, 

respectively. In fact, a large number of promising wide-gap semiconductors still cannot be used 

for electronic applications because of the inability to achieve desired free carrier densities by 

doping [1]. Calculation of the IEs relies on the ability to accurately calculate the formation 

energies of both neutral and charged defects. First-principles defect calculations invoke the 

periodic boundary conditions, which, however, introduce artificial long-range Coulomb 

interactions between a charged defect and its periodic images, and consequently, a divergence. 

This divergence is routinely removed through the use of a homogenous counter charge (i.e., the 

so-called jellium background) to neutralize the supercell [17]. In calculating a charged defect in a 

three-dimensional (3D) system, the error in the defect energy may be expressed as 1/ , 

where  is the cube root of the supercell volume ( √ ) [18]. While 0 at the zero 

jellium density limit, i.e., ∞, there is no simple expression so far for the proportionality 

constant. 
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For defects in a 2D system, one could in principle treat the system as a special case of a 3D 

system, as demonstrated for a model quasi-2D system in Ref. [19]. Due to the poor screening in 

the z-direction, such an approach usually requires a very large , in order to 

include a large enough empty space in the vacuum direction, often making such calculations 

computationally prohibitive. Instead, 2D defect calculations typically take the limit  ∞ (in 

the vacuum direction) at a fixed lateral area . However, while in a 3D system the 

jellium is contained within bulk, in a 2D system it extends into vacuum and, as a consequence, 

the Coulomb energy of the system diverges as ∞. A number of studies for 2D charged 

defects have been based on such an approach, reporting widely-spread results with arbitrarily 

chosen  [9,10,13-16]. For almost two decades [20], this problem has remained unresolved, 

despite the importance of studying charged surface defects and catalysis involving charged 

species at surfaces. Methods to overcome the problem include those introducing a neutralizing 

charge [21-23] or fixing the potential at cell boundary [24-26]. Recently, another supercell 

correction method was proposed [19]. However, it depends on the construction of a model 

Gaussian charge, which may be good only for very localized defects, and an effective dielectric 

constant that depends only on . Application to monolayer systems is an example of the 

limitations of the model, as a modified dielectric constant profile from the density functional 

perturbation theory must be adopted [11,27]. 

In this paper, we propose a method for charged defects in 2D systems free of any of the 

above ad hoc assumptions and/or tunable model parameters, thereby maintaining the simplicity 

of the supercell approximation. A key development is the formulation of the asymptotic behavior 

of the defect energies at large  and lateral area . Taking  as an example, we show by first-

principles methods how to calculate the converged value ( ) accurately and efficiently. We 

also show that, for any negative-charge acceptor-like defect in a supercell with fixed , 

increasing  always leads to the unphysical occupation of vacuum states. Although not 

previously discussed in the literature, this can render a 2D or quasi-2D charged defect correction 

scheme erroneous. Application to boron and nitrogen vacancies, VB and VN, and substitutional 

carbon, CB and CN, in monolayer BN reveal that the converged IEs (  1.4 eV) are all very deep. 

This results can be contrasted to those for 3D cubic BN (0.0-0.37 eV), which are considerably 
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shallower. It raises the question whether chemical doping is a viable approach for electronic 

applications of 2D materials. 

The calculations were performed using the density functional theory (DFT) [28,29], as 

implemented in the VASP codes [30,31]. Here, we used the Perdew-Burke-Ernzerhof functional 

[32] for exchange and correlation, but the methodology applies to any functional. The cutoff 

energy of the plane wave basis is 400 eV. A 3×3×1 Monkhorst-Pack mesh grid was used for k-

point sampling. The dimension of the supercell is varied from 15 to 70 Å for  and from 6 6 

to 9 9 unit cells for . To accommodate the computationally demanding calculations, 

the effects of spin polarization were excluded. The errors in the calculated lattice parameters 

were found to be less than 0.8%, when compared to experiment [33,34]. All atoms are relaxed 

until the Hellman-Feynman forces on individual atoms are less than 0.02 eV/Å. Under the 

jellium approximation, the formation energy of defect α  with charge q is given by [35],  

              (1)

 

where ( )αq,Etot  is the total energy of the defect supercell, ( )hostEtot  is the energy of the same cell 

without the defect, ( ) ( ) ( )hostEαq,Eαq,ΔE tottottot −= , in  is the number of atoms being exchanged 

during the formation of the defect with the ith atomic reservoir of energy iE + iμ , where iμ  is the 

atomic chemical potential of an element relative to the energy in its stable form (either solid or 

gas), iE , and  is the Fermi energy relative to the valence band maximum, . To show the 

divergence problem for 2D systems, Figure 1 compares ∆  for charged CB and CN (namely,  

and ) in 2D and 3D BN. 

The defect transition energy is defined by 
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∆ , ∆ 0, /0  ,         (3) 

where the formation energy of the charge neutral defect ∆ 0,  can be readily calculated 

without any errors associated with the jellium approximation. Hence, in 2D systems, finding ∆ ,  is equivalent to finding /0 , and the two share the same divergence. Furthermore, 

IEs are simply special cases of the defect transition energies, / , relative to the band edges. 

A transition of a defect from charge state (+) to (0), with respect to the conduction band 

minimum (CBM), defines a donor IE, and a transition from (0) to (-), with respect to the valence 

band maximum (VBM), defines an acceptor IE [35]. Both have well-defined physical meaning 

and hence must not diverge. 

The origin of this energy divergence in 2D systems can be understood using classical 

electrostatics. In the continuum limit of 2D charge density, the exact interactions of the periodic 

charged planes and their jellium background can be analytically written as the electrostatic 

energy per unit cell, yielding a linear divergence with respect to , i.e., . 

It has been shown numerically that the above linear term dominates the -dependence for 

reasonably large  (see for example, Figure 1(a) and the discussion in Supplementary Materials 

[36]). Therefore, under this limit, other -dependent terms such as  may be neglected. 

Additionally, for real systems, one also needs to correct for the non-uniformity of the planar 

charge. Since in the correction, the charge distribution along the z-direction is unchanged, this 

correction should thus be an -independent 2D Madelung energy [37], √ , where  is a 

defect-specific Madelung constant. In other words, the ionization energy for the defect takes the 

asymptotic form 

, √  ,       (4) 

where ,  is a supercell-size-dependent quantity and only  is the true, size-independent 

. One may also arrive at Eq. (4) from a different perspective, whereby formally expanding ,  in a power series of  and  and then take the physical limits: ∞ 
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at a fixed ,  ∞  at a fixed , and ∞. The details can be found in the 

Supplementary Materials [36]. 

While Eq. (4) asserts that both donor and acceptor should have the same divergent slope / , where  stands for model, the actual DFT results appear to be at odds with the 

model. Figure 2 shows that for donors, namely,  and , indeed a linear divergence of IE  

with respect to  is obtained with a slope . As a matter of fact, the slope = 0.038 eV/Å in 

Figure 2(a) agrees with the model to within three decimal points. For acceptors, namely,  and 

, there is no such a clear linear dependence. Importantly, however, when 20  40 , 

the expected dependence does hold, as shown in Figure 2(b), with a slope . 

We find that the abnormal behavior of the acceptors is a universal phenomenon, caused by 

the electric field inside the vacuum, due to the separation between the compensating jellium and 

the charged slabs. To see this, Figures 2(c) and (d) compare schematically the calculated average 

electrostatic potentials along  for donors and acceptors, respectively: away from the 2D BN 

sheet, the potential for a donor increases linearly, whereas for an acceptor it decreases linearly.  

Because there are (empty) electronic states in the vacuum region, a lowering of the vacuum 

levels relative to the occupied defect level(s) by the artificial jellium eventually leads to an 

unphysical occupation of the vacuum states, as can be clearly seen by the charge contour plots. 

For a relatively small , the occupied defect charge is on the BN sheet as shown in Figure 2(e), 

but for a larger , the charge is also delocalized into the vacuum as shown in Figure 2(f) (purple 

region in vacuum). As a result, IE starts to deviate from its linear behavior. The unphysical 

situation may be avoided by increasing  , which would reduce the slope of the potential in 

regions away from the 2D layer in Fig. 2(d) [38].  

Using Eq. (4), one may obtain converged  by letting ∞ at finite . To see this, we 

lot ,  for VB, VN, CB, and CN, as a function of . If the supercell size is large enough, 

according to Eq. (4), all fitted lines at different  should be linear, even though they may not 

intercept on the same position at 0. Figure 3 shows that indeed this is the case here. Hence, 

if we further define  
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, , √  ,      (5) 

then  should be the common intercept of the lines at 0 , regardless of . Note that ∞,  also intercepts at the same point. Therefore, the difficult problem of taking the 

limit for ∞ is transformed into a simpler problem of finding an intercept at 0 at finite . 

Note that while we are finding the intercept of Eq. (5) for 0, this should not be confused 

with direct calculation of a supercell with small , as Eq. (4) and (5) are only valid for large . 

Insets in Fig. 3 show that the , s for  between 6 6 and 9 9 all intercept at a common 

value at 0. This is true for all the four defects being studied, demonstrating the validity of 

using the asymptotic form of energy [Eq. (4)] for evaluating . 

Often, one needs to screen many different defects with efficiency or perform calculations 

using hybrid functional, with spin polarization, or spin-orbit coupling. Using the above 

procedure, i.e., calculating  for every defect  may be inefficient. Fortunately,  depends 

primarily on the geometry of the 2D system (becoming the Madelung constant in the case of 

point charges), but not on the specific defect. This is illustrated in Figure 4 where , calculated 

using various , are shown as error bars. Regardless  and , the calculated s always fall 

onto the exact solution to within 0.1 eV. Hence, one only needs a one-time calculation for  

(using any defect) to obtain the s and this can be done using even a modest  value (say the 

smallest  for 6 6 in Fig. 3). 

The converged s for defects in monolayer BN are all deep, 1.86 eV for CN, 2.03 eV for CB, 

1.44 eV for VB, and 2.50 eV for VN. The results for CN and CB may be compared to those in Ref. 

[27], which are 2.03 and 2.24 eV, respectively. Both methods perform well against an additional 

benchmark calculation we performed; in which we directly extrapolated the linear dependence in 1/  of the ionization energy of the CB defect in large supercells (ranging from 15 15 to 19 19) with , yielding a limiting value of 2.13 eV. Our results may also be 

contrasted to those of cubic BN, 0.18 eV for CN, 0.00 eV for CB, 0.37 eV for VB, and 0.36 eV for 

VN. The results of VB and VN for cubic BN are in line with those in the literature [39,40]. Clearly, 

the ability to ionize a defect or chemical dopant in the 2D system has been drastically reduced. 
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In summary, we propose a simple and model-free approach to accurately and efficiently 

evaluate the formation energy and  of charged defects in 2D systems. We showed that 

converged  is given by the ∞  limit, which can be obtained by extrapolating the 

asymptotic function at large  and finite  back to the 0  value. We identified the 

unphysical occupation of vacuum states for all acceptors when the vacuum region is sufficiently 

large, which puts a restriction on most charged defect correction schemes. Unlike some of the 

other methods that are strongly system-specific, our method equally applies to quasi-2D systems 

such as semiconductor surfaces [19,20,41] and semiconductor-liquid interfaces [42]. Application 

to 1D charged systems is also straightforward by using the asymptotic expression (S9) from the 

Supplementary Materials [36]. 
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FIGURE 1 (color online). Calculated formation energy of charged  and  as a function of (a) 

supercell size  (with a fixed lateral dimension:  for 6 6) in 2D BN and (b) cube 

root of bulk volume in 3D BN. Insets show the local structures around the defects. Blue, pink, 

and gray balls are N, B and C atoms, respectively. For bulk cubic BN, a 3×3×3 Monkhorst-Pack 

mesh grid was used, and the dimension of the supercell is varied from 8, 16, 32, 48, 64, 96, 144, 

to 216 atoms. 
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FIGURE 2 (color online). Calculated IEs of (a) donors: CB and VN, and (b) acceptors: CN and VB, 

as a function of  (with a fixed lateral dimension:  for 6 6 ). (c) and (d): schematic 

illustration of the corresponding electrostatic potentials. (e) and (f): acceptor state in  at 

different  = 20 and 70 Å, respectively. The shade areas at the top and bottom of panel (f) are 

the calculated defect states unphysically delocalized into the vacuum. The isosurface of the 

electron density is 1 10 / , where  is the Bohr radius. 
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FIGURE 3 (color online). Calculated IEs at different lateral dimensions (  for 6 6，77，8 8,  and 9 9) as a function of . The insets show the value of , ,/√  as a function of . The converged s (red-circle highlight) are deduced from the insets 

at 0. 
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FIGURE 4 (color online). Ionization energies, calculated at finite lateral dimension  with 

different , are shown as the error bars. Symbols are the averaged results. Dashed lines are the 

converged s for comparison. 
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