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W.E. Sondheim,38 S.P. Sorensen,63 I.V. Sourikova,7 P.W. Stankus,52 E. Stenlund,40 S.P. Stoll,7 T. Sugitate,2350



2

A. Sukhanov,7 J. Sun,62 J. Sziklai,69 E.M. Takagui,59 A. Takahara,12 A. Taketani,56, 57 R. Tanabe,65 Y. Tanaka,4751

S. Taneja,62 K. Tanida,34, 56, 57, 60 M.J. Tannenbaum,7 S. Tarafdar,3 A. Taranenko,48, 61 E. Tennant,5052

H. Themann,62 D. Thomas,1 T.L. Thomas,49 M. Togawa,57 A. Toia,62 L. Tomášek,27 M. Tomášek,27 H. Torii,2353
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9Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic69

10Chonbuk National University, Jeonju, 561-756, Korea70

11Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, P. R. China71

12Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan72

13University of Colorado, Boulder, Colorado 80309, USA73

14Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA74

15Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic75

16Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France76
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We present azimuthal angular correlations between charged hadrons and energy deposited in
calorimeter towers in central d+Au and minimum bias p+p collisions at

√
sNN = 200 GeV. The

charged hadron is measured at midrapidity |η| < 0.35, and the energy is measured at large rapidity
(−3.7 < η < −3.1, Au-going direction). An enhanced near-side angular correlation across |∆η| >
2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy
distribution, we extract the anisotropy strength v2 for inclusive charged hadrons at midrapidity up
to pT = 4.5 GeV/c. We also present the measurement of v2 for identified π± and (anti)protons
in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion
collisions. These results are compared with viscous hydrodynamic calculations and measurements
from p+Pb at

√
sNN = 5.02 TeV. The magnitude of the mass-ordering in d+Au is found to be

smaller than that in p+Pb collisions, which may indicate smaller radial flow in lower energy d+Au
collisions.

PACS numbers: 25.75.Dw135
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Small collision systems, d+Au and p+Pb, have been studied at the Relativistic Heavy Ion Collider (RHIC) and136

the Large Hadron Collider (LHC) to understand baseline nuclear effects for heavy-ion collisions in which hot nuclear137

matter is made. The d+Au and p+Pb systems have generally been considered too small to create significant quantities138

of hot nuclear matter. This assumption has been challenged in p+Pb at
√
s
NN

= 5.02 TeV with the measurements139

of (i) near-side azimuthal correlations across a large pseudorapidity gap [1–3], also observed in high multiplicity p+p140

collisions at 7 TeV [4], and (ii)the elliptic anisotropy parameter v2 measured by multiple particle correlations [5, 6].141

Hydrodynamic models, successfully applied to heavy ion data at RHIC and the LHC, can qualitatively reproduce142

the v2 results from p/d+nucleus [7–9]. If hydrodynamics is the primary cause of the observed effects then there should143

be a mass-ordering of the magnitudes of v2 for identified particles, in which heavier particles have smaller v2 values at144

low pT < 1.5 GeV/c [10, 11]. Recently, such mass-ordering has been observed in p+Pb collisions at LHC for v2 of π±145

and p, p̄ [12]. Finite near-side correlations can also arise from enhanced two-gluon emission at high parton densities146

as in the Color Glass Condensate (CGC) model [13–15].147

Long-range angular correlations and elliptic anisotropy of inclusive and identified hadrons in p+p and d+Au col-148

lisions at RHIC can provide crucial tests as to whether a hydrodynamically expanding medium is created in these149

small systems. The v2 in d+Au has been measured from hadron pair correlations, within a limited rapidity range150

(0.7 > |∆η| > 0.48) and under the assumption that jet-like correlations are the same in various multiplicity-selected151

events [16]. In this Letter, we report measurements of azimuthal correlations in top 5% central d+Au and mini-152

mum bias p+p collisions between charged hadrons at midrapidity (|η| < 0.35) and energy deposited at large rapidity153

−3.7 < η < −3.1 (Au-going direction). We also report v2 for inclusive hadron and identified pions and (anti)protons154

in d+Au at midrapidity using an event plane across |∆η| > 2.75.155

The data were obtained from p+p in the 2008 and 2009 experimental runs and d+Au in the 2008 run with the156

PHENIX detector. The event centrality class in d+Au collisions is determined as a percentile of the total charge157

measured in the PHENIX beam-beam counter covering −3.9 < η < −3.0 on the Au-going side [17–20]. For the 5%158

most central d+Au collisions, the corresponding number of binary collisions and number of participants are estimated159

by a Glauber model to be 18.1± 1.2 and 17.8± 1.2 respectively [17].160

Charged particles used in this analysis are reconstructed in the two PHENIX central-arm tracking systems, con-161

sisting of drift chambers and multi-wire proportional pad chambers (PC) [21]. Each arm covers π/2 in azimuth and162

|η| < 0.35, and the tracking system achieves a momentum resolution of δp/p≈0.7%⊕1.1%×p (GeV/c).163

The drift-chamber tracks are matched to hits in the third layer of the PC, reducing the contribution of tracks164

originating from decays and photon conversions. Hadron identification is achieved using the time-of-flight detectors,165

with different technologies in the east and west arms, for which the timing resolutions are 130 ps and 95 ps, respectively.166

Pions and (anti)proton tracks are identified with over 99% purity at momenta up to 3 GeV/c [18, 22] in both systems.167

Energy deposited at large rapidity in the Au-going direction is measured by the towers in the south-side Muon168

Piston Calorimeter (MPC-S) [23]. The MPC-S comprises 192 towers of PbWO4 crystal covering 2π in azimuth and169

−3.7 < η < −3.1 in pseudorapidity, with each tower subtending approximately ∆η × ∆φ ≈ 0.12 × 0.18. Over 95%170

of the energy detected in the MPC is from photons, which are primarily produced in the decays of π0 and η mesons.171

Photons are well localized, as each will deposit over 90% of its energy into one tower if it hits the tower’s center. To172

avoid the background from noncollision noise sources (∼ 75 MeV) and cut out the deposits by minimum ionization173

particles (∼ 245 MeV), we select towers with deposited energy ETower > 3 GeV.174

We first examine the long-range azimuthal angular correlation of pairs consisting of one track in the central arm175

and one tower in the MPC-S. Because the towers are mainly fired by photons, and the azimuthal extent of each energy176

deposition is much smaller than the size of azimuthal angular correlation from jets or elliptic flow, these track-tower177

pair correlations will be good proxies for hadron-photon correlations without attempting to reconstruct individual178

photon showers. We construct the signal distribution S(∆φ, pT ) of track-tower pairs over relative azimuthal angle179

∆φ ≡ φTrack − φTower, each with weight wtower, in bins of track transverse momentum pT .180

S(∆φ, pT ) =
d(wTowerN

Track(pT )−Tower
Same event )

d∆φ
(1)

Here φTrack is the azimuth of the track as it leaves the primary vertex, φTower is the azimuth of the center of the181

calorimeter tower. The wTower is chosen as the tower’s transverse energy ET = ETower sin (θTower). Because the182

calorimeter is operating in a linear regime the overall ET pattern on each event will simply be the sum of the patterns183

from each impinging particle, so we expect no distortion effect due to occupancy. To correct for the nonuniform184

PHENIX azimuthal acceptance in the central arm tracking system, we then construct the corresponding “mixed-185

event” distribution M(∆φ, pT ) over track-tower pairs, where the tracks and tower signals are from different events in186

the same centrality and vertex position class. We then construct the normalized correlation function187
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C(∆φ, pT ) =
S(∆φ, pT )

M(∆φ, pT )

∫ 2π

0
M(∆φ, pT ) d∆φ∫ 2π

0
S(∆φ, pT ) d∆φ

(2)

whose shape is proportional to the true pairs distribution over ∆φ.188
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FIG. 1. The azimuthal correlation functions C(∆φ, pT ), as defined in Eq. 2, for track-tower pairs with different track pT
selections in 0%–5% central d+Au collisions (left) and minimum bias p+p collisions (right) at

√
sNN = 200 GeV. From top to

bottom, the track pT bins are 0.2–1.0 GeV/c, 1.0%–2.0 GeV/c and 2.0%–4.0 GeV/c. The pairs are formed between charged
tracks measured in the PHENIX central arms at |η| < 0.35 and towers in the MPC-S calorimeter (−3.7 < η < −3.1, Au-going).
A near-side peak is observed in the central d+Au which is not seen in minimum bias p+p. Each correlation function is fit with
a four-term Fourier cosine expansion; the individual components n = 1 to n = 4 are drawn on each panel, together with the fit
function sum.

Figure 1 shows the correlation functions C(∆φ, pT ) for different pT bins, for the 5% most central d+Au collisions and189

for minimum bias p+p collisions. Central d+Au collisions show a visible enhancement of near-side pairs, producing190

a local maximum in the distribution at ∆φ ∼ 0, which is not seen in the p+p data. We analyze the distributions191

by fitting each C(∆φ, pT ) to a four-term Fourier cosine expansion, f(∆φ) = 1 +
∑4
n=1 2cn(pT ) cos(n∆φ); the sum192

function and each individual cosine component are plotted in Fig. 1 for each distribution. We observe that the p+p193

distribution shape is described almost entirely by the dipole term cos(∆φ), as expected generically by transverse194

momentum conservation, via processes such as dijet production or soft string fragmentation; The shape in central195

d+Au exhibits both dipole and quadrupole cos(2∆φ) terms with similar magnitudes. Both c3 and c4 are found to be196

≈0, as shown in Fig. 1.197

Figure 2 shows the fitted c2 parameters from the d+Au and p+p with both statistical and systematic uncertainties.198

We estimate contributions to systematic uncertainties from two main sources: (1) tracking backgrounds from weak199

decays and photon conversions and (2) multiple collisions in a bunch crossing (pile-up) in d+Au collisions. We estimate200

the tracking background contribution by reducing the spatial matching windows in the third layer of the PC from 3σ201

to 2σ, and find that the change is less than 2% fractionally in c2. To study the pile-up effect in d+Au collisions we202

separate the d+Au data set into two groups, one from a period with lower luminosity and the other with the higher203

luminosity. The corresponding pile-up event fractions in central d+Au are 3.5% and 7.0%, respectively. The cdAu2 in204

the lower luminosity data set is around 5% higher than that in higher luminosity across all pT . The average pile-up205

fraction for the total data sample is around 4%–5% and a systematic uncertainty around 10% is assigned to cover206

this effect. Additionally, we compare cpp2 results for p+p data taken in the 2008 and 2009 running periods, and see a207
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FIG. 2. Panel (a) shows c2(pT ) for track-tower pairs from 0%–5% d+Au collisions and c2(pT ) for pairs in minimum bias p+p
collisions times the dilution factor (ΣET

pp/ΣET
dAu). Panel (b) shows their ratio, indicating that the contribution to the c2

amplitude in d+Au from elementary processes present in p+p are small, only a few percent at low pT and rising to only 10%
by 4.5 GeV/c. Both statistical (bar) and systematic (band) uncertainties are shown.

difference of less than 5% for pT < 1 GeV/c, increasing to 15% for pT > 3 GeV/c. To characterize biases that might208

arise because the tower energy and centrality are measured in the same rapidity range, we have compared results209

obtained using two different detectors in the Au-going direction to define the event centrality: (i) the reaction-plane210

detector (−2.8 < η < −1.0) [24] and (ii) the ZDC (η < −6.5) [25]. The c2 values obtained in the two cases differ by211

6% from those reported here.212

Some portion of the correlation quadrupole strength c2 in the d+Au data could be due to elementary processes such213

as dijet fragmentation (mainly from away side) and resonance decays. We can estimate the effect of such processes214

under the assumptions that (i) all correlations present in minimum bias p+p collisions are due to elementary processes,215

and (ii) those same processes occur in the measured d+Au system as a simple superposition of several nucleon-nucleon216

collisions. In this case, we would expect the contribution from elementary processes to be equal to the cpp2 (pT ) but217

diluted by the increase in particle multiplicity between p+p and d+Au, if the number of elementary processes is218

proportional to the multiplicity of the other particle used in pair correlations (see also the “scalar product method”,219

as in [26, 27]). We estimate the ratio of the p+p to d+Au general multiplicities by measuring the ratio of the total220

transverse energy
∑
ET seen in the MPC-S calorimeter in p+p versus d+Au events, which we find to be approximately221

1/(17.9± 0.35) and only weakly dependent on the track pT (≤ 2%). We can then separate cdAu2 (pT ) into elementary222

and nonelementary components:223

cdAu2 (pT ) = cNon−elem.
2 (pT ) + cElem.

2 (pT )

≈ cNon−elem.
2 (pT ) + cpp2 (pT )

ΣEppT
ΣEdAuT

(3)

The ratio in Fig. 2(b) shows that the contribution to cdAu2 from elementary processes is indeed small, ranging from224

a few percent at the lowest pT to around 10% at the highest pT , and no more than 13% with the other centrality225

selections mentioned above. The presence of the near-side peak in the pairs distribution in the central d+Au system226

is reproduced in some physics model calculations. The formation of a medium that evolves hydrodynamically is one227

such possibility [7–9], but processes such as initial state gluon saturation [14, 15] could also create such an effect.228

To quantitatively address the physics of this near-side peak and compare with detailed hydro-dynamics calculations,229

the v2 of charged hadrons, pions, and (anti)protons at midrapidity is measured via event plane method [28]. The v2230

is measured as v2(pT ) = 〈cos 2(φParticle − ΨObs
2 )〉/Res(ΨObs

2 ), where the average is over particles in the pT bin and231

over events. The second order event plane direction ΨObs
2 is determined using the MPC-S (Au-going). The study of232
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correlation strength as above indicates that the elementary-process contribution to the event plane v2 result is similarly233

small, less than 10% fractionally out to pT = 4.5 GeV/c. The event plane resolution Res(ΨObs
2 ) (∼ 0.151 ± 0.003)234

is calculated through the standard three subevents method [28, 29], with the other two event planes being (i) the235

second order event plane determined from central-arm tracks, restricted to low pT (0.2 GeV/c < pT < 2.0 GeV/c) to236

minimize contribution from jet fragments; and (ii) the first order event plane measured with spectator neutrons in the237

shower-maximum detector on the Au-going side (η < -6.5) [25, 29]. The systematic uncertainties on the v2 of charged238

hadrons are mainly from the tracking background(2%) and pile-up effects(5%), as described above, and also from the239

difference in v2 from different event plane determinations. To estimate the systematic uncertainty of the latter we240

compare the v2 extracted with the MPC-S event plane with that using the south (Au-going) beam-beam counter,241

and the two measurements of v2 are consistent to within 5%. The difference for v2 from the different centrality242

determinations as discussed previously is less than 3%.243

2v

0.1

0.2

0.3
(EP) 0-5%2v
(2p) 0-5%2v

Polynominal Fit

ATLAS 0-2%
CMS 0-2%
ALICE 0-20%

d+Au@200 GeV p+Pb@5.02 TeV (a)

(GeV/c)
T

p
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

 / 
F

it
2v 1.0

1.5
(b)

FIG. 3. Measured v2(EP ) for midrapidity charged tracks in 0%–5% central d+Au at
√
sNN = 200 GeV using the event plane

method in Panel (a). Also shown are v2 measured in central p+Pb collisions at
√
sNN = 5.02 TeV [2, 3, 6], and our prior

measurements with two particle correlations (v2(2p)) for d+Au collisions [16]. A polynomial fit to the current measurement
and the ratios of experimental values to the fit are shown in the panel (b).

The v2 of charged hadrons for 0%–5% central d+Au events with event plane methods are shown in Fig. 3(a) as244

v2(EP ) for pT up to 4.5 GeV/c, along with a polynomial fit through the points. Also shown are our earlier measurement245

with two particle correlations (v2(2p)) and the v2 measured in the central p+Pb collisions at LHC. Figure 3(b) shows246

the ratios of all of these measurements divided by the fitting results. The v2 from our prior measurements, with247

subtraction of peripheral data to reduce jet contributions, exceed the current measurement; differences range from248

about 15% at pT = 1.0 GeV/c and increases to about 50% at pT = 2.2 GeV/c. The difference is about 1.5 σ for the249

top three points with the largest deviations from the fit. It may be due to different jet-like correlation being present250

in central and peripheral collisions [30]. The present measurement, without peripheral subtraction, is performed with251

|∆η| > 2.75, far away from the near-side main jet peak. The contribution from jet, which includes both near and252

away-side, has been found to be less than 10% from the study of c2 shown in Fig. 2. Even if there is a 30% enhancement253

of jet-like correlation from p+p to central d+Au collisions, it will only raise from 10% to 13% our estimate of the254

jet-like contribution to the v2 in central d+Au collisions. The present v2 measurement is closer to that of p+Pb255

collisions [2, 3, 6]. It is about 20% higher than that of p+Pb at pT = 1 GeV/c, and the difference decreases to a few256

percent at pT > 2.0 GeV/c.257

Figure 4 shows the midrapidity v2(pT ) for identified charged pions and (anti)protons, with charge signs combined258

for each species, up to pT = 3 GeV/c using the event plane method; the systematic uncertainties are the same as259

for inclusive charged hadrons. A distinctive mass-splitting can be seen. The pion v2 is higher than the proton’s260

for pT < 1.5 GeV/c, as has been seen universally in heavy-ion collisions at RHIC [34–39]. Figure 4(a) also shows261
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(0-20%)-(60-100%)

FIG. 4. Measured v2(pT ) for identified pions and (anti)protons, each charged combined, in 0%–5% central d+Au collisions at
RHIC. In panel (a) the data are compared with the calculation from a viscous hydrodynamic model [31–33], and in panel (b)
the v2 data for pions and protons in 0%–20% central p+Pb collisions at LHC are shown for comparison [12], they are measured
from pair correlations with a peripheral event yield subtraction

calculations of viscous hydrodynamics with Glauber initial conditions starting at τ = 0.5 fm/c with η/s = 1.0/(4π),262

followed by a hadronic cascade [31–33]. The splitting at lower pT is also seen in the calculation. The identified particle263

v2 in 0%–20% p+Pb collisions are shown in Fig. 4(b) for comparison [12]. The magnitude of the mass-splitting in264

RHIC d+Au is smaller than that seen in LHC p+Pb, which could be an indicator of stronger radial flow in the higher265

energy collisions [40].266

We have presented measurements of long-range azimuthal correlations between particles at midrapidity and at267

backward rapidity (Au-going direction) in 0%–5% central d+Au collisions at
√
s
NN

= 200 GeV. We find a localized268

near-side azimuthal angular correlation in these collisions for pairs across |∆η| > 2.75 which is not apparent in269

minimum bias p+p collisions at the same collision energy. The anisotropy strength v2 is measured for midrapidity270

particles with respect to a event plane determined from a region separated by the same pseudorapidity interval. The271

v2 values are qualitatively similar to those observed in central p+Pb collisions at
√
s
NN

= 5.02 TeV. The v2 for272

identified pions and (anti)protons at midrapidity exhibit a mass ordering, qualitatively similar to observations in273

relativistic heavy-ion collisions. This ordering can be described by a viscous hydrodynamic model, where they are274

believed to reflect radial flow in hydrodynamics. The magnitude of mass-splitting in v2(pt) is found to be smaller in275

d+Au collisions in comparison to p+Pb collisions at higher energies, possibly indicating smaller radial flow in d+Au276

at
√
s
NN

= 200 GeV.277
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