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We show that a single I = 1 spin-parity JPC = 1++ a1 resonance can manifest itself as two
separated mass peaks, one decaying into an S-wave ρπ system and the second decaying into a P-
wave f0(980)π system, with a rapid increase of the phase difference between their amplitudes arising
mainly from the structure of the diffractive production process. This study clarifies questions related
to the mass, width, and decay rates of the a1 resonance raised by the recent high statistics data of
the COMPASS collaboration on a1 production in πN → πππN at high energies.
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New insight into the properties of light mesons is
emerging from the unprecedented statistical precision of
the COMPASS experiment at CERN where beams of 190
GeV pions interact with nucleon targets [1]. These data
are bound to enrich (if not challenge) our understand-
ing of low-energy meson spectroscopy while, in addition,
uncovering possible evidence for long-sought states of
the strong interaction QCD potential beyond the quark-
antiquark states of the standard model.

We focus on the isospin 1 axial-vector resonance
a1 (reported in the Particle Data Compilation as
a(1)(1260) [2]). Evidence is presented in the COMPASS
data for a new narrow JPC = 1++ axial-vector state,
strongly coupled to the πf0(980) system. This observa-
tion of a peak in the two body πf0 P-wave intensity at a
mass of 1.42 GeV, combined with a phase motion close to
180◦ with respect to other waves, appears at face-value
to mean that a second axial-vector resonance is present,
close in mass to the known broad a1(1260) that couples
mainly to the πρ system [1]. While these three features,
i.e. two peaks at different masses and a rapid phase varia-
tion, are clearly present, there are reasons to be surprised,
among which we mention: (i) The a1(1260) is a central
member of the axial-vector nonet, which, together with
the JP = 0−, 1−, and 0+ form the ground-state of the
light quark-antiquark spectrum. A newcomer in the fam-
ily would be difficult to accommodate. (ii) It is peculiar
to have two JPC = 1++ three-pion states, with identical
quantum numbers, close in mass (within a full width of
each other), with orthogonal decay modes, without the
presence of some new quantum number. The K0

S −K0
L

system led to decisive discoveries in fundamental physics;
neutrino mixing is a spectacular current example. How-
ever, in the a1 case, we see no candidate for a distinguish-
ing quantum number.

Our basic approach to high energy forward production
of three pion states in pion-nucleon interactions is the
Drell-Hiida-Deck mechanism [3]. This model has been

studied extensively in the production of the JP = 1+

ρπ system [4], and here we extend the analysis to the
JP = 1+ f0(980)π system. An important difference is
that whereas the ρπ system is in an orbital S-wave state,
the f0(980)π is in an orbital P-wave state. Since the
two-body ρπ and f0π systems are strongly interacting,
we must modify the Deck mechanism with the proper
final-state interactions due to the re-scattering of these
systems. This is an inescapable physical consistency con-
dition of the entire analysis. The unitary coupled chan-
nel approach that we developed in Refs. [5–7], should be
an ideal way to show whether one resonance suffices or
whether the COMPASS data do require two nearby res-
onances with the same axial-vector quantum numbers in
the three-pion system.
In this Letter, we demonstrate that a single resonance

suffices to explain the data and that the f0π decay mode
of the usual a1 is being observed for what appears to be
the first time [2]. Our method can be used to determine
new values for the mass and width of the a1, information
important for lattice QCD and other calculations of the
hadron spectrum.

FIG. 1: Deck production processes for (a) ρπ and (b) f0π.

Two-channel Deck amplitudes. We follow closely
Refs. [4] and [5]. We consider the Deck amplitudes
for production of the quasi-two body systems πρ and
πf0 at small momentum transfer and high incident en-
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ergy. We denote these T ρ
D = TD(πN → πρN) and

T f
D = TD(πN → πf0 N). The reactions are represented in

Figs.1 (a) and (b).
The πρ case has been studied at length. Its amplitude

(c.f., Eq. (2.1) of Ref. [5]) is

T ρ
D = gρππKρ(t2)

1

m2
π − t2

is13e
bt1σπp (1)

where gρππ is the ρππ coupling constant (g2/(4π) = 2.4),
Kρ is the magnitude of the incident pion momentum in
the ρ rest frame [4], b is the slope of the πN elastic diffrac-
tion peak, and σπp is the πp total cross-section. The
invariants s13, t1 and t2 are labeled in Fig. 1 (a).
Similarly, the πf0 production amplitude is

T f
D = gf0ππ

1

m2
π − t2

is13e
bt1σπp . (2)

Choosing the average value of the f0 → ππ width of
60 MeV, we obtain a numerical value gf0ππ ≃ 1.45 GeV.
The other factors in Eq. (2), relative to Fig. 1 (b) have
the same meaning as in Eq. (1).
The ρπ Deck background has been well studied, where,

by background, we mean the amplitude before any final
state interactions are included. We refer to Ref. [5] and
extract what is useful in the present analysis. We work
in the final ρπ (f0π) center of mass frame; M is the
invariant mass of this system. In the limit of forward
production (t1 → 0) and large s, Eq. (1) produces the ρπ
system predominately in an S-wave [4], used in previous
calculations (e.g., Ref. [5]).
However, the JP = 1+ f0π system is in an orbital P-

wave. To address f0π, we must extend the partial wave
extraction calculations to finite values of t1 and s. We
present the complete calculation of these amplitudes else-
where [8]. The important feature is that the higher par-
tial wave amplitudes are of order t1/M

2 or M2/s with
respect to the dominant S-wave. An immediate conse-
quence is that f0π P-wave production should have a no-
ticeably smaller rate than the ρπ S-wave process, as is
borne out in the complete calculation and exhibited by
the COMPASS data, where the intensity of the f0π peak
at 1.42GeV, is lower than that of the ρπ peak at 1.26GeV
by a factor of the order of a few 10−3.
In the COMPASS experiment, the value of the square

of the invariant total energy is s = 380 GeV2 while
the momentum-transfer t1 in the smallest bin is t1 ∈
[−0.1,−0.13] GeV2. We are interested in values ofM ∼ 1
to 2 GeV. Since |t1|/M2 ≫ M2/s, the only relevant
kinematic corrections come from the momentum trans-
fer dependence. We choose to work at the fixed value
t1 = −0.1 GeV2, and we checked that within the first
t-bin (t1 ∈ [−0.1,−0.13] GeV2), our results do not vary
appreciably. A convenient dimensionless expansion pa-
rameter is

Θ1 =
t1

(M2 −m2
π)

. (3)

The JP = 1+ S-wave ρπ background amplitude is, to
first order in Θ1,

TDeck
S = − s

(M2 −m2
π)

×
(

1− 1

2
Θ1(

(3M2 +m2
π)

(M2 −m2
π)

− Eρ

Eπ

)(
1

y
ln

1 + y

1− y
)

)

,(4)

where Eπ and Eρ are the pion and ρ energies in the ρπ
rest frame, and where y = pπ/Eπ is the ρπ phase space
factor, pπ being the pion momentum in the ρπ rest frame.
The JP = 1+ P-wave f0π amplitude is, at the same

order in Θ1,

TDeck
P = +

3

2

s

(M2 −m2
π)

Θ1 ×
(

(3M2 +m2
π)

(M2 −m2
π)

− Ef0

Eπ

)

(
−2

y
+

1

y2
ln(

1 + y

1− y
)) ,(5)

where Eπ, Ef0 are the pion and f0 energies, pπ the pion
momentum in the f0π rest frame and, as above, y =
pπ/Eπ.
Equation (5) is a major clue to our investiga-

tion. The right hand side contains the factor
(3M2 +m2

π)/(M
2 −m2

π) − Ef0/Eπ. This factor is neg-
ative at low values of M (since mf0/mπ > 3), but it
vanishes near M ≃ 1.38 GeV and becomes positive after-
ward. Furthermore, if we give this term some small imag-
inary part, its phase will switch suddenly from −180◦ to
zero. This sudden and rapid phase variation is not a
dynamical effect in the sense of a resonant phase, but
it originates in the structure of the dynamical process
by which the f0π state is produced. Another interesting
qualitative feature of Eq. (5) is that it grows in the region
of interest (M ∼ 1.2 to 1.4 GeV) and therefore tends to
push a resonance peak upward in M .
Keeping in mind the parameters introduced in Eqs. (1)

and (2), our two JPC = 1++ amplitudes are

(

TDeck(ρπ)
TDeck(f0π)

)

=
2i
√
2sN

(M2 −m2
π)

(

gρππKρσπpT̃ρπ

gf0ππ σπp T̃f0π

)

,

(6)
where, T̃ρπ and T̃f0π can be read off from Eqs. (4) and
(5). The structure remains the same after we unitarize.
The normalization factor N is irrelevant for present
purposes and is taken equal to 1 here.

Unitarization. For theoretical and technical details
about multi-channel final state unitarization, we refer to
the literature, in particular to Ref. [9] where the general
analysis may be found and to Ref. [5] where a specific ap-
plication is made. We recall that if S is the (two-channel)
strong interaction S matrix, then the unitarized Deck
amplitude TD, which we can write as a two dimensional
vector as in Eq.(6), has a right hand unitarity cut along
which it satisfies the relation

TD+ = STD− (7)
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TD+ and TD− being the values of the unitarized Deck
amplitude above and below the cut.
Our basic assumption is that there is a single a1 res-

onance whose (unique) second-sheet pole parameters we
determine. Since we are dealing with a two-channel case,
we parametrize the coupled ρπ and f0π final state in-
teractions (or rescattering) via this resonance. In order
to do this, we introduce a K matrix, as in Eq.(3.14) of
Ref. [5]:

K(M2) =

(

g2

1

s1−M2

g1g2
s1−M2

g1g2
s1−M2

g2

2

s1−M2

)

. (8)

The crucial tool to treat coupled channel final state in-
teractions is aD-matrix, related directly to the S matrix.
It is presented explicitly in Eq.(3.15) of [5]:

D(M2) =
1

D0(M2)

(

g1 −g2(s1 −M2 − α2C2)
g2 g1(s1 −M2 − α2C1)

)

(9)

where α2 = g21 + g22 , C1 and C2 are Chew-Mandelstam
functions [10], and the energy denominator function
D0(M

2) is

D0(M
2) = (s1 −M2 − g21C1(M

2)− g22C2(M
2)) . (10)

The function D0(M
2) contains all the information (that

we put in) on the coupled-channel ρπ-f0π strong inter-
action. It is an analytic function which possesses the ρπ
and f0π branch cuts from [mρ+mπ]

2 to infinity and from
[mf0 +mπ]

2 to infinity. Its second sheet pole determines
the nominal position and width of the a1 resonance.
As in [5], the unitarized Deck amplitude with resonant

rescattering corrections taken into account is

T u
D(M2) = TD(M2)− 1

π
D(M2)×

∫ ∞

(mρ+mπ)2
ds′

ImD(s′)TD(s′)

(s′ −M2)
. (11)

Here T u
D(M2) is a two-dimensional vector and TD(M2)

is the “background” Deck amplitude discussed above.

Direct production contribution. In addition to its man-
ifestation through final state interactions, the a1 may also
be produced directly in a diffractive process πp → a1p.
For direct production, we choose

Tdir(s,M
2) =

isσπpG

D0(m2)

(

f1
f2

)

, (12)

where G represents the diffractive coupling to the π to
the a1, and f1, f2 are the couplings of the a1 in the ρπ
and f0π channels respectively. Our final amplitude is

T (M2) = T u
D(M2) + Tdir(s,M

2) . (13)

In the one-channel case exemplified by ρ photo-
production [11], the interference of these two terms can
shift the apparent peak position of the ρ.

Analysis and results. Some salient points can be made
short of a detailed fit to data. We first select appropriate
values of the a1 parameters that provide a good global
description. The COMPASS results fix these parame-
ters more stringently than when we dealt only with the
S-wave ρπ system (and other S-wave channels, such as
K∗K̄). Here, the acceptable mass and width of the a1,
defined by the position of the second sheet pole, turn out
to be quite restricted. Our analysis indicates that:

M(a1) ≃ 1.40± 0.02 GeV,
Γ(a1) ≃ 0.30± 0.05 GeV.

These values of mass and width correspond to values of
the parameters s1 ∼ 2.002 GeV2 and g1 ∼ 0.732 GeV.

The interesting parameter to vary is the ratio γ =
g2/g1 in order to find the range of values that produce
two peaks with appropriate characteristics: the f0π peak
occurs at higher mass than the ρπ peak, and the ratio of
maximal intensities of these peaks, i.e. ρπ/f0π, falls be-
tween 1,000 and 500, as indicated by the available data.
These requirements lead to negative values of γ in the
range [−0.1,−0.055]. In other words, the a1 couplings
to ρπ and to f0π have opposite signs. We choose as our
central value γ = g2/g1 = −0.08.

FIG. 2: The ρπ differential cross section as a function of the
mass M , in three cases: background Deck, unitarized Deck as
in Eq.(11), and the final result including direct production.

The next step is to determine the amount of direct
production necessary to fix the two peaks, one in ρπ,
the other in f0π, at their desired positions, i.e. M =
1.26 GeV for ρπ and M = 1.42 GeV for f0π. Values such
as Gσπpf1 = 120 and Gσπpf2 = 5.5 in Eq. (12) ensure
good positions for the two peaks, and this situation is
stable when one varies the parameter γ. The ratio of
direct production to the background Deck amplitude is
consistent with the value we obtained previously [5] in
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our analysis of data at much lower energies, with smaller
statistics.

FIG. 3: The f0π differential cross section as a function of the
mass M , in three cases: background Deck, unitarized Deck as
in Eq.(11), and the final result including direct production.

It is interesting to see how the two peaks are built up.
We plot in Fig. (2) the shapes of the ρπ intensity as a
function of the energyM , for the various terms in the cal-
culation. The pure Deck background does not produce
a resonant shape. The unitarized amplitude shows effec-
tively the ∼ cos δ zero that appears in the one-channel
case [5] (to which this problem is actually very close).
Finally, direct production produces the observed peak,
at the right position. A similar set of curves for the f0π
intensity is shown in Fig. (3). Notice that the form of
the Deck background by itself appears to simulate a nar-
row resonance peak at threshold (of course without any
accompanying phase).

FIG. 4: Three phase-differences between f0π and ρπ, in the
1.2 to 1.6 GeV region. The middle curve corresponds to our
“central” solution γ = −0.08; the two others (marked) to
other values in the range of interest. In all three cases, the
other results of the calculation remain practically unchanged:
peak positions and intensities.

The separation of the positions of the two peaks is

evident. The width of a1(1260) is about twice the width
of a1(1420) in the calculation. The a1(1420) peak is also
more symmetrical, with width about 0.14 GeV. The lower
end of the f0π intensity exhibits a (tiny) peak at around
1.2 GeV owing to the zero emphasized in Eq. (5).

We display in Fig. (4) a set of phase differences be-
tween the f0π and ρπ amplitudes for three values of our
parameter γ. We adopt γ = −0.08 as our “central” value
(subject to more refined analyses). We call attention to
the rapid rise of over 100◦ in the phase difference in the
mass region 1.2 to 1.3 GeV. A quantitative fit to the data
would yield a precise value of γ and of the branching ra-
tio of the a1 into f0π of the order of 10−3 relative to the
dominant decay mode a1 → ρπ.

Summary. We find that the main features of the COM-
PASS data, two mass peaks separated by ∼ 160 MeV
with significant relative phase motion, are fully compat-
ible with a single a1 resonance. A detailed quantitative
fit of the data with this formalism would lead to a new
determination of the mass and width of the a1 and of its
branching fraction into f0π.
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