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Abstract

We use the connection between infrared (IR) renormalons and condensates in the
operator product expansion for correlation functions to make predictions concern-
ing the structure of singularities in the Borel plane for the perturbative series in
quantum field theories with different levels of supersymmetry. The same conspiracy
can be used for establishing the absence of condensates or IR renormalons in gauge
theories with an IR conformal regime or gauge theories in Higgs phase. The absence
of the renormalon-induced factorial divergence implies that instanton contributions
(where present) must be well-defined. We show that the conventional bubble-chain
method for detecting renormalon-induced factorial divergences in these theories is
not sufficient.



Introduction: One of the remarkable successes of the operator product expansion
(OPE) is its capacity to connect perturbative information with non-perturbative con-
densates in a manner that consistently identifies the factorial divergences associated
with infrared (IR) renormalons with certain condensates of specific dimensions [1-6].
The classic example is the relation between the first IR renormalon Borel pole in
Yang-Mills theory and the OPE gluon condensate,
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where 3, is the first coefficient of the 3 function.! The standard method of identifying
renormalons in QCD correlation functions at large momenta is through quark bubble
chains, with the subsequent replacement —2N;/3 — y, and the result (1) may be
interpreted as a confirmation that this replacement works in asymptotically free
theories [5, 6].

Recently it has been noted in several contexts that this connection is much less
straightforward in supersymmetric field theories [7—10]. In this Letter we investigate
renormalons in super-Yang-Mills theories (SYM) and discover novel features. We also
consider QCD-like non-SUSY theories with fermions in two-index representations;
these theories reduce to SYM in the planar limit, through large- N orbifold /orientifold
equivalences [12-14]. In all these cases we show that the simple bubble-chain graphs,
a usual renormalon signature, do not provide meaningful data.

The fact that the correspondence between diagrammatic renormalon arguments
and the OPE fundamentally differ for SUSY theories can be understood from the
simple observation that all purely gluonic operators have vanishing condensates in
SYM theory without matter [9]. Thus, consistency between the OPE and the pertur-
bative renormalon analysis requires that certain renormalon Borel poles must have
vanishing residues, which must happen via intricate cancellations between classes of
diagrams. These cancellations are not captured by any straightforward diagrammatic
arguments.

We turn this observation around, and use the general structure of the OPE as
a tool to reveal the behavior of various perturbative expansions. The renormalon-
related factorial divergence can appear only if it has a chance of conspiracy. In
other words, renormalons can generate only such degree of the factorial perturbative
divergence that can conspire with the nonvanishing OPE condensates. Since in
supersymmetric theories the class of possible condensates is more restricted than in

Let us emphasize that such relations are inapplicable to ultraviolet (UV) renormalons. They
will not be discussed here. For a discussion of UV renormalons in the supersymmetric Wess-Zumino
model see [11].



Yang-Mills theory, a number of conventional renormalons should simply disappear.
This approach is also motivated by an attempt to interpret the OPE in terms of
the formalism of resurgent trans-series. In the concluding part we discuss some
nonsupersymmetric Yang-Mills models with an IR conformal regime, which also have
peculiar renormalon patterns.

Bubble graphs as a detector for renormalons: The standard method of isolating
the renormalon contributions is through insertions of the fermion bubbles in the gluon
propagator (for reviews see [5,6,9]). It is crucial that the fermion bubbles appear
only in the gluon propagators, and that Ny is a free parameter (Fig. 1). Only in this
case the given method allows one to single out renormalons from particular sets of
graphs (Fig. 1).

Figure 1: The bubble-chain diagram for a two-point function associated with renor-
malons. Solid lines denote quark propagators, while dashed lines are for gluons.

The graph above refers to a two-point function of the type

i / e (J(2)J(0) . @)

A typical example is the calculation of a current-current correlator (e.g. the QCD
Adler function [5]). Each bubble in the chain is a fermion loop. In pure N' =1
SYM theory, fermions are present in the form of gauginos. The gaugino bubbles
have no free parameter, and, moreover, appear in a similar way (through supersym-
metry) both on the gluon and gluino lines. Hence, in pure SYM theory the bubble
insertion method does not work. To make it work, one can introduce N; matter
supermultiplets in the fundamental representation (i.e quarks and squarks), replac-
ing pure SYM theory by supersymmetric QCD (SQCD). Then one could consider
matter superfield bubble insertions in the gauge superfield propagator. This concep-
tually straightforward strategy shows that — although the correspondence between
renormalon singularities in the Borel plane and OPE is maintained — the isolation of
renormalons from individual Feynman graphs as in Fig. 1 becomes problematic.
First, let us note that in SQCD the operator basis in the OPE changes as com-
pared to pure SYM. In SQCD the lowest-dimension relevant operator is | f (Q eV Q7 )
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where @y, Q s are matter superfields. Here, the number of matter superfields Ny is
assumed to be N +1 < Ny < 3N/2, to ensure the existence of a stable vacuum
state [15]. Its lowest component can develop a vacuum expectation value (VEV)
which has dimension 2. Hence, instead of (1), the nearest singularity in the Borel
plane is expected to move to
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A renormalon signature corresponding to (3) can can come only through the wave-
function renormalization Z factor of the matter field, which is irrelevant in QCD
correlation functions. Indeed, the anomalous dimension ~ of the matter field fol-
lowing from the Z factor enters in the two-point function of the conserved matter
currents as [10]
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f

where D is the Adler function, f is the flavor index, and ¢; is the correspond-
ing charge. The anomalous dimension of the matter fields comes from the dia-
gram depicted in Fig. 2. Unlike QCD, the Z factors in SQCD are gauge invariant.
Renormalons corresponding to Fig. 2 produce the singularity (3) which through (4)

Q
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Figure 2: Anomalous dimensions of the matter fields in SQCD.

penetrates into the Adler function.

Vanishing VEVs in SYM and suppressed VEVs in QCD(AS/S/BF)?: Consider
first pure SYM theory. It is well known that the operator trF?, being proportional
to the trace of the energy-momentum tensor, cannot develop a nonvanishing VEV.
Vanishing of VEVs of all operators which are built exclusively from the gluon fields
was proved in [9]. The lowest dimension operator made of gluino fields A would be
the dimension 3 the chiral condensate, <%tr)\)\>, but while it can have a nonzero

2%i.e. Yang-Mills theory with quarks in two-index antisymmetric, symmetric or bifundamental

representations, respectively.



VEV, it cannot appear in the OPE of chiral singlets. This term comes from the
lowest component of S = W*W,, and acquiring a VEV is compatible with unbroken
supersymmetry:

2mik
Y

(LtrA)) = A3e’W k=0,...,N—1. (5)

However, this breaks the Z,y discrete chiral symmetry down to Z,, leading to N-
isolated supersymmetric vacua, |€2), and since the chiral condensate is charged under
the discrete chiral symmetry, it cannot appear in the OPE for chiral-invariant corre-
lation functions. Nor can it be associated with a Borel singularity in the Borel plane
coming from perturbation theory. Thus, the first possible non-vanishing single-trace
condensate is (trtAAAA). This means that in ' = 1 SYM the first ambiguity in the

Borel resummation of the perturbation theory must be (at least) of order g—i:
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Since IR renormalons are in one-to-one correspondence with the OPE, we conclude
that the leading singularity arising from the naive bubble chain diagrams (Fig. 1)
must cancel. The gluino bubbles would wrongly identify g—i terms.

Here we will expand the class of operators which cannot have condensates in
supersymmetric theories. This vanishing severely restricts occurrence of renormalons.

1) With unbroken SUSY, for an arbitrary (local) color and Lorentz-singlet com-
posite superfield, only the lowest component can have nonvanishing VEVs.

2) If a composite SUSY operator is a total superderivative, all its components
must have vanishing VEVs. For instance, in SQCD without superpotential, the
Konishi anomaly [16] tells us that

D* (@' Q") = T f w2, (7)
implying that the gluino condensate (the lowest component of tr W?) becomes an
order parameter. It must vanish if supersymmetry is unbroken. One may also use
generalized Konishi anomalies [17] for proving the vanishing of more complicated
(higher dimension) condensates.

Now let us consider QCD-like non-SUSY theories with fermions in two-index rep-
resentations, known as QCD(AS/S/BF), corresponding to antisymmetric, symmetric
and bifundamental fermion representations. QCD(AS) is a natural large-N gener-
alization of QCD, and through the large-N orbifold /orentifold equiavlence exhibits
many interesting features of SUSY theories [12-14]. For example, the key observa-
tion is that the leading renormalons are generated by planar graphs. In the same
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leading approximation in 1/N all expectation values that vanish in SYM and can be
projected onto QCD(AS/S/BF) (i.e. belong to the common sector) will continue to
vanish in the daughter theories. In particular [12-14],

(Lerp2)QPES L Lpa g (P2 4+ eF2)) YT L LAt 500 (8)

Combining these two facts together we conclude that the planar renormalons which
disappear in SYM theory must also disappear in QCD(AS/S/BF) in the large-N
limit.

This large-N suppression can also be understood in terms of the connection be-
tween the vacuum energy density and the gluon condensate, via the trace anomaly

relation in YM, /' =1 SYM, QCD(AS/S), and QCD(BF) with massless fermions:

s Y™
_6:1]:2 (trF?) SYM
Evac = i<Tuu> = —SJZ;LQ/S (trF'?) QCD(AS) (9)
— e (F?) QCD(S)
| e (rFY + k) QCD(BF)

Note that in the large-N limit the leading order beta-function coincides for all the
one-flavor theories, N' =1 SYM, QCD(AS/S), and QCD(BF). This is a natural con-
sequence of the orientifold equivalence. Also note that in the sense of the number of
bosonic and fermionic degrees of freedom, the numbers are almost balanced. Since
dim(Adj) = (N?—1), there are (N?—1) gluons in all systems. The number of fermions
are, respectively, 2dim(AS) = (N?—N), 2dim(S) = (N?+N), 2dim(BF) = N2. Be-
cause of the orientifold/orientifold equivalence, the leading order O(N?) contribution
vanishes in all of these theories. The vacuum energy starts as u*N* for QCD(AS/S)
because the off-set between the number of bosonic and fermionic degrees of free-
dom is O(N'). The vacuum energy starts as u*N° for QCD(BF) because the off-set
of the number of bosonic and fermionic degrees of freedom is O(N?). Thus, from
the microscopic point of view, there is an apparent Bose-Fermi cancellation. This
exact cancellation is essentially inherited from AV = 1 SYM due to the large-N
equivalence, despite the fact that QCD(AS/S/BF) are non-supersymmetric. The
non-perturbative part of the vacuum energy density, by the large-N equivalence, will

be O(N) for QCD(AS/S), and O(N?) for QCD(BF).
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Thus, AS/S/BF theories show that the renormalon factorial divergence generally
speaking cannot be detected through bubble chains. Indeed, in these theories one can
replicate fermions, acquiring Ny as a free parameter. If Ny > 2 they lose their planar
connection with SYM theory, implying occurrence of nonvanishing condensates of the
type (8). For conspiracy, so should factorial divergence of the perturbative series.

Total disappearance of IR renormalons: In SQCD in the Seiberg conformal win-
dow [18] the infrared limit of the theory is conformal. Moreover, near the edges of
the window either the original theory or its dual is weakly coupled. Since the gauge
coupling ceases running in the infrared (Fig. 3), the factorial divergence associated
with renormalons is cut off. To see this, consider the standard renormalon generating
integral [5, 6]

(%) ) /{22045(/{32)
[ 01 1207 (10)

The large k? behavior is associated with UV renormalons, and if a,(k?) continued
to run logarithmically at small k2, this would produce IR renormalons [5,6]. How-
ever, if ag(k?) — as. at small k%, one can integrate all the way to zero momentum
with no singularity on the way, thus, the integration is ambiguity free, and there are
no IR renormalons. And indeed, such theories have no localized asymptotic states
(particles) and no vacuum condensates. (This does not mean that all nonperturba-
tive effects vanish. Instantons and ITA pairs show up in the color-singlet correlation
functions.)

The above statement has, in fact, broader validity. Consider a QCD-like gauge
theory (non-supersymmetric) with fermions in the representation R, possibly re-
ducible. One can always choose R such that the g function of the theory has a
zero at a small value of a [19]. Then the infrared physics is conformally invariant,
as seen in perturbation theory. This is the well-known Banks-Zaks (BZ) limit [19].
For example, take the number of fundamental flavors close to the asymptotic free-
dom boundary, Ny/N = 11/2 — ¢, with small e. This limit will correspond to a
perturbative IR fixed point at a, = e.

This is also consistent with 't Hooft’s intuition [3] that IR-renormalons in asymp-
totically free QCD-like theories are possibly related to confinement. If N is the
lower boundary of conformal window, then, upon changing Ny < N} to Ny > N,
the IR-renormalon singularities in the Borel plane must completely disappear. Losing
IR-renormalons may be indicative of the confinement-to-conformality transition.

In the lattice formulation of QCD-like theories, stochastic perturbation theory
has been used to show that the leading large-order behavior of perturbation theory
is governed by the gluon condensate [20]. It would be interesting, if possible, to
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Figure 3: In asymptotically free IR-conformal field theories, for example in the
Banks-Zaks limit [19], the coupling constant runs at high energies, but reaches a
fixed point «a, at low energies.

study large-orders of stochastic perturbation theory in the vicinity of the boundary
of the conformal window, N7}, to see the (dis)appearance of the condensate, and
the associated quantum phase transition. We also note that the convergence of the
OPE for unitary conformal field theories has recently been argued using an explicit
conformal block decomposition [21].

Theories in the Higgs Phase: In gauge theories in which all gauge bosons acquire a
mass by the Higgs mechanism,, one can maintain the weak coupling regime provided
that the relevant scale v > A, where A is the dynamical scale. An instructive example
is the electroweak sector of the Standard model with the Weinberg angle set to zero.
The gauge coupling does not run at small momenta, it is frozen at v. Hence, the IR
renormalon-induced factorial divergence of the perturbative series does not extend
to infinity, and the associated vacuum condenstes must vanish.

Higher supersymmetries: Pure N' = 2 SYM theory (the Seiberg-Witten model)
presents an example of an intermediate situation. Consider, for instance, the SU(2)
gauge group. At a generic point in the moduli space, SU(2) is reduced down to
U(1), and there is no renormalon-induced factorial divergence. If v > A, identifiable
instantons persist, the I-A pairs show up in the Kéhler metric [22] and should be
well-defined.

If v ~ A, the theory is at strong coupling. The set of non-vanishing condensates
in various correlation functions is even narrower than in A/ = 1 theories. For in-
stance, gluino condensates of the type (5) obviously become forbidden by N' = 2
supersymmetry.

At the monopole (or, equivalently, dyon) point in the moduli space, the supermul-
tiplet becomes massless, reviving the infrared running in the low-energy SQED which
remains after going to the Higgs phase of the original theory. However, the U(1) the-
ory is infrared free, while in the UV domain it becomes a part of the original SU(2)



theory again. Now, IR renormalons are Borel-summable, while UV renormalons
(which cannot be cured within SQED itself) become cured upon the UV-completion
of the U(1) effective theory (i.e. its embedding into the full SU(2)).

N = 4 SYM theory at the origin of the moduli space is conformally invariant. The
coupling constant does not run at all and is fixed at its UV value. All condensates
vanish identically due to the absence of a dynamical scale and particle-like spectrum.
IR renormalons (as well as UV renormalons) are not expected, and it is plausible that
in the N = oo limit there are no singularities in the Borel plane. Then the planar
perturbation theory has a finite radius of convergence and the Borel transform is an
entire function as N — oco. As an example, consider the cusp-anomalous dimension.
In the large-N limit it has a finite radius of convergence in the 't Hooft coupling A,
with a singularity on the negative real axis [23]. A finite radius of convergence in
the A plane implies that the Borel transform of the perturbation theory is an entire
function.

Conclusions: We have shown that in supersymmetric theories contrasting the
OPE with the renormalon-induced factorial divergence leads to non-trivial predic-
tions. In supersymmetric theories VEVs of many operators are forbiddden; the higher
the degree of supersymmetry, the wider is the class of forbidden operators. This fact
implies the disappearance of certain (quite conventional) renormalon-induced facto-
rial divergences in perturbation series. Conversely, the absence of renormalons may
signify that certain operators are absent in the OPE, or are well-defined by them-
selves. This analysis also applies to orbifold/orientifold daughter theories, to gauge
theories in Higgs phase, and to those theories (both supersymmetric and not) which
have an IR conformal regime.
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