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Dynamical decoupling operations have been shown to reduce errors in quantum information pro-
cessing. Leakage from an encoded subspace to the rest of the system space is a particularly serious
problem for which leakage elimination operators (LEO) were introduced. Here we provide an anal-
ysis of non-ideal pulses, rather than the well-understood idealization or bang-bang controls. Under
realistic conditions, we show that these controls will provide the same protection from errors as
idealized controls. Our work indicates that the effectiveness of LEOs depends on the integral of
the pulse sequence in the time domain, which has been missing because of the idealization of pulse
sequences. Our results are applied to a three-level system for the nitrogen-vacancy centers under
an external magnetic field and are illustrated by the fidelity dynamics of LEO sequences, ranging
from regular rectangular pulses, random pulses and even disordered (noisy) pulses.

Introduction.—Quantum information is often stored
in, and processed with, logical or encoded qubits which
use physical d-state systems for the encoding. This
is done to suppress or avoid noise (as in decoherence-
free/noiseless subsystems), to enable errors to be de-
tected and corrected, to enable universal quantum com-
puting, or simply because the physical system being used
is really not an ideal qubit (see [1] and references therein).
In these cases, the encoded or logical subspace has a par-
ticular advantage which motivates the encoding.

When this encoded qubit is subjected to noise, it may
lose some or all of its advantage due to its coupling with
the other states of the system which are not used in the
encoding. Such loss of information is called leakage since
information leaks from the encoded states into the sur-
rounding Hilbert space. This is particularly troublesome
when the encoding is required to ensure the qubit retains
one of the properties above.

Leakage elimination operators (LEOs) were proposed
to counteract leakage in a two-level system which en-
codes one logical qubit in a multilevel Hilbert space [2–9]
by employing unbounded fast and strong pulses called
“bang-bang” (BB) control [10–13], which originates from
the spin-echo effect [14] applied for the first order cor-
rections of the evolution. In general, the total Hamilto-
nian including system and bath can be written as HSB =
HP +HQ+HL, whereHP acts within the qubit subspace,
i.e., the subspace of interest; HQ has no effect on the
qubit subspace because it acts only within the remaining
Hilbert space orthogonal to the subspace of P ; and HL

(the leakage operator) represents the diffusion between
the P - and Q-subspaces [9, 15, 16]. If an operator RL

satisfies {RL, L} = 0 and [RL, P ] = [RL, Q] = 0, then
it follows that RL serves as a leakage elimination opera-

tor: limm→∞(e−i
HSBt

m R†
Le

−i
HSBt

m RL)
m = e−iHP te−iHQt.

This holds to the order of t2 when m = 1.

During BB control, RL or R†
L is so strong and fast that

the system-bath Hamiltonian can be neglected. This as-
sumption is impractical or almost experimentally inac-
cessible for most existing setups. For the choice of free
evolution time t, one should make t≪ 1/ωc, where ωc is
the upper bound of the frequencies of those bath-modes
coupling to the system. It is reasonable for the situation
where the characteristic frequency of the environment is
much less than that of the system. When the frequencies
of both system and environment are comparable to each
other, it is difficult to meet these requirements.

Therefore, a nonperturbative version of LEO the-
ory is desirable for the coherence-protection/diffusion-
suppression protocol for open quantum systems. This
would enable the use of sequences in a wider domain
of the system’s characteristic parameters, which would
apply for non-ideal pulses in the presence of a non-
Markovian environment. A practical scenario is the ef-
fective three-level Hamiltonian for the spin of electronic
ground states of a nitrogen vacancy (NV) center [17–
22] in a diamond in presence of an external magnetic
field. An NV center has an S = 1 state with zero-
field splitting D = 2.88 GHz between the ms = 0 and
ms = ±1 states. An external magnetic field along
the crystalline axis of the diamond will lift the degen-
eracy of the ms = ±1 states. The lowest two lev-
els with ms = 0 and ms = −1 have an energy gap
ωNV = D − geµBBz ≈ 2.88(1− 0.01Bz/mT ) GHz and it
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can be used as a spin-based quantum memory unit [23–
25]. However, it neglects the influence of the ms = 1
state. Fluctuations of the external magnetic field would
violate the far off-resonance condition for the transition
between ms = 0 and ms = −1 and also ms = 0 and
ms = 1. Such leakage problems in the ms = 0,−1 sub-
space can be serious, especially in a small magnetic field.
In this work, the theory of nonperturbative LEO is

presented in the framework of non-Markovian quantum-
state-diffusion (QSD) equation [26], by which an arbi-
trary sequence of LEO pulses as well as their fluctua-
tions can be taken into account without any approxima-
tion. The nonperturbative LEO approach enables us to
find out something missing due to the above-mentioned
approximations and idealizations. Significantly, we find
that the effectiveness of LEO, also for conventional dy-
namical decoupling (DD), is not determined by details of
a fast pulse sequence, but the integral of the pulse se-
quence over time, which effectively increases the energy
splitting between P - and Q-subspaces. In other words,
it shows that any two fast pulse sequences, for exam-
ple two sequences c(t) and c′(t) = c(t)+fluctuation, will
have the same effectiveness if they have the same inte-
grals over time. Incidentally, our scheme automatically
solves the main problem, the fluctuations in the driv-
ing fields, that the continuous decoupling scheme tar-
gets [27]. In particular, we focus on the leakage problem
of three-level system that is ubiquitous in quantum optics
and quantum solid-state devices. Our protocol allows a
straightforward extension to multilevel systems. Distin-
guished from other work targeting the optimized pulse
sequences [28], below we use the regular, random and
noisy pulse sequences [29] to identify the key elements
for attaining decoherence-suppression.
Construction of nonperturbative LEO.—Our LEO con-

stitutes one part of system Hamiltonian in QSD equation.
The total system space is separated into the (logical) P -
subspace, and the remaining (orthogonal) Q-subspace as
explained above. The LEO acts as I in P and −I in
Q, i.e., RL = diag[c1I,−c2I], where the two identity op-
erators have the same dimensions as P and Q, respec-
tively; and ck’s (k = 1, 2) are non-negative real num-
bers. This LEO will be performed nonperturbatively by
solving the QSD equation with both the pulse and HSB

present rather than using the BB pulse approximation as
in Ref. [3].
Consider a general three-level atomic system [30]:

Hsys =
∑3

j=1 ωj|j〉〈j|. The Lindblad operators for the
V -type and λ-type atoms are denoted by LV = µ1|3〉〈1|+
µ2|3〉〈2| and Lλ = ν3|3〉〈1|+ ν2|2〉〈1|, respectively. Then
by the LEO protocol, the nonperturbative operators are

RV
L = c(t)diag[1, 1, 0], Rλ

L = c(t)diag[1, 0, 0], (1)

where c1 = c(t) is the implemented pulse sequence and
c2 is taken to be zero without loss of generality since it
is equivalent to adding an overall constant term to the

Hamiltonian. The exact stochastic wave-function for the
system including the LEO is governed by the following
QSD equation [26] (setting ~ = 1):

∂tψt(z
∗) = [−iHsys− iRx

L+Lxz
∗
t −L†

xŌx(t)]ψt(z
∗), (2)

where x = V or λ. For a V -type three-level sys-
tem, ŌV (t) = F1(t)|3〉〈1| + F2(t)|3〉〈2|, where Fk(t) ≡
∫ t

0 dsα(t, s)fk(t, s), k = 1, 2. α(t, s) is the environmental
correlation function and fk(t, s) satisfies fk(t, t) = µk and
∂tfk(t, s) = i[ωk−ω3+c(t)]fk+Fk(t)(µ1f1+µ2f2). While
for the λ-type system, Ōλ(t) = P2(t)|2〉〈1| + P3(t)|3〉〈1|,

where Pk(t) ≡
∫ t

0 dsα(t, s)pk(t, s), k = 2, 3, and pk(t, s)
satisfies pk(t, t) = νk and ∂tpk(t, s) = i[ω1 − ωk + c(t) +
ν2P2+ν3P3]pk. According to Eq. (2), the ansätz Ōx, and
the Novikov theorem, the exact master equation in the
rotating frame with respect to Hsys +Rx

L is

∂tρsys = [Lx, ρsysŌ
†
x] + [Ōxρsys, L

†
x]. (3)

The fidelity describing the survival probability of the
initial state ψ0 is defined by F(t) ≡

√

〈ψ0|ρsys|ψ0〉 =
√

M [〈|ψ0|ψt(z∗)〉〈ψt(z∗)|ψ0〉].
Result of nonperturbative LEO.– A BB pulse is a lim-

iting case of more practical rectangular pulse, which can
be characterized by the period τ , the duration time ∆,
and the strength Φ0. Particularly, c(t) = Φ0/∆ for
nτ − ∆ ≤ t ≤ nτ , where n ≥ 1 is an integer; other-
wise, c(t) = 0. In Fig. 1(a), we demonstrate a typical
parameter diagram for the fidelity of a three-level atom
coupled to a non-Markovian environment with an expo-
nential decay correlation function, where 1/γ character-
izes the environmental memory time. Here the LEO con-
trol is chosen to be a rectangular pulse sequence and the
y-axis denotes the dark time in one period of pulse. This
diagram, parameterized by ∆ and τ , divides the whole
space into regions, where the fidelity can be preserved at
0.9, 0.99, etc. and is reminiscent of a phase transition.
The ideal pulse occupies only the lower left corner of the
diagram and one can expect a tolerance from non-ideal
pulses which achieve the same fidelity at any desired mo-
ment. It indicates a great deal of freedom in choosing an
efficient combination of duration time and period. For
instance, F ≥ 0.99 can be obtained at ωt = 10 as long
as the ratio of dark time and duration time is not larger
than about 3/2 when ∆ ≤ 0.04ωt.
This raises a question: what are the important parame-

ters or factors for attaining nearly the same control effect

besides the parameters of environment? Our research in-
dicates that over all of the parameters of LEO pulse and
within a fixed evolution time scale, the time integral over
the pulse, i.e., the accumulation of the pulse strength in
the control history, is a clear candidate. It is also clear
that the pulse integral is linearly proportional to Φ0. In
Fig. 1(b), we compare the dynamics of a V -type three-
level system under control with different Φ0. The calcu-
lations are performed with ω1 −ω3 = ω, ω2 −ω3 = 0.8ω,
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FIG. 1. (Color online) (a) Parameter diagram of fidelity at
ωt = 10 in cases of both |ψ0〉 = |1〉 for the λ-type system with
ω1 = ω/2, ω2 = ω3 = −ω/2 and |ψ0〉 = 1/

√
2(|1〉 + |2〉) for

the V -type system with ω1 = ω2 = ω/2, ω3 = −ω/2 (they
share the same result), where Φ0 = ω. (b) Dynamics of a
V -type system under a regular LEO sequence with different
Φ0. |ψ0〉 = 1/

√
2(|1〉 + |2〉), ∆/τ = 0.6, τ = 0.02ωt. In

the two frames and the following figures, the environmental
correlation function is α(t, s) = Γγ/2e−γ|t−s|−iΩ(t−s), where
γ = 1, Γ = ω, and Ω = 0.5ω.

µ1 = ω, and µ2 = 0.5ω. It is shown that the larger Φ0

(essentially, the larger splitting between the interested
and the remaining subspaces), the more resistant the sys-
tem is to leakage. At the fixed moment ωt = 40, when
Φ0 = 0.4ω, the fidelity decays to about 0.85; while when
Φ0 = ω, it is still above 0.98.

However, the strength Φ0 cannot completely deter-
mine the most effective LEO control. Figure 2(a) shows
a simulation with an unchanged pulse strength Φ0 and
various ratios of duration time and period. It exhibits
a phenomenon analogous to a phase transition, where
r ≡ ∆/τ = 0.35 is a threshold value rc. If r < rc,
then an accelerated decay emerges in the fidelity dy-
namics. The line of r = 0.2 shows a rapid decay in
a very short time. Although when ωt < 19, the effect
of r = 0.3 is nearly the same as r = 0.35, it deviates
from the asymptotic curve by several sudden jumps. If
r = rc = 0.35, then the fidelity decays to sightly less than
0.9 at ωt = 40, and presents a significant gap from the re-
sults with even larger r. While if r > rc, almost the same
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FIG. 2. (Color online) Dynamics of a V -type system under
(a) regular LEO with different ratio r = ∆/τ (b) random
LEO with different average ratio r. |ψ0〉 = 1/

√
2(|1〉 + |2〉).

degrees of decoherence-suppression are achieved. The in-
set in Fig. 2(a) shows the curves for r = 0.4, 0.6, 0.8,
which have an approximate fidelity of 0.98 at ωt = 40,
and the maximal relative error is less than 0.5%. So here
the fidelity will be saturated with 0.4 < r < 1, where
the LEO control effect is nearly completely determined
by the pulse integral over time rather its configuration.

Stochastic quantum fluctuations and environmental
noise inevitably yield a random rather than regular rect-
angular pulse. Such a sequence can be “simulated” in the
following way: based on a regular sequence with fixed τ ,
∆ and Φ0, the time-dependent parameter X = τ or Φ0

are obtained by X ′ = X [1 + AXRX(t)], where RX can
be uniformly distributed between −1 and 1, and Rτ and
RΦ0

are uncorrelated. After a sufficiently long time of
evolution and ensemble averaging, M [X ′] = X . There-
fore, the integral of the pulse strength over time is the
same as that of the original regular sequence. Figure 2(b)
shows the result where random amplitudes are Aτ = 40%
and AΦ0

= 90%. Compared to Fig. 2(a), accelerated-
decoherence phenomenon has been alleviated. Under
such a large fluctuation in parameters, the controls with
the same ratio r ≤ 0.4 seem to be only a little less ef-
fective than that of the regular LEO pulse. The fidelity
also asymptotically saturates in the regime r ≥ 0.6 [see
the inset in Fig. 2(b)], where it decays to around 0.96 at
ωt = 40.
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FIG. 3. (Color online) Dynamics of a V -type system un-
der noisy LEOs with different amplitudes of Gaussian noise.
|ψ0〉 = 1/

√
2(|1〉 + |2〉), r = ∆/τ = 0.6, τ = 0.02ωt.

Influenced by some uncontrollable factors, a real non-
perturbative LEO control could be realized by the noisy
pulse. To keep unchanged the pulse integral during the
same period of time, one can expect two types of noises.
(a) Global noise: c(t) → c(t) + Φ0/τWn(t), where W is
a percentage measuring the dimensionless noise strength
and n(t) is a white noise. (b) Local noise: only in each
duration time ∆, the strength of pulse is equivalent to the
fixed value plus the noise Φ0/τWn(t), while it remains
dark during the original dark intervals. The results from
Gaussian noise are presented in Fig. 3. To exhibit the
effect of the pulse integral, we use a greatly exaggerated
amplitude of the noise. Particularly, even when W is as
large as 100%, for local and global noises, the deviations
from the regular pulse are still less than 0.02 and 0.03, re-
spectively. Therefore, the accumulation of pulse strength
remains the key element even for a noisy LEO.
Discussion and conclusion.—A nonperturbative LEO

sequence suppresses the leakage by rapidly enhancing the
energy difference between the interested subspace P and
the remaining Hilbert space Q in terms of the control
c(t), which is in contrast with the traditional DD con-
trols averaging or symmetrizing the system-environment
coupling away by repeatedly and instantaneously rotat-
ing the system. Specifically, under an LEO, the mod-
ulus of coefficients Fk’s, k = 1, 2, of the O-operator in
the master equation (3) that determines the decoherence
rate can be preserved close to 0. Using the correlation
function indicated in Fig. 1(a), one can find

Fk(t) = eiC(t)

∫ t

0

dse−iC(s)G(s), (4)

where G(t) = Γγµk

2 + [−γ + i(ωk − ω3 −Ω)]Fk + (µ1F1 +

µ2F2)Fk. When C(t) ≡
∫ t

0 dsc(s) is sufficiently large,
the kernel in the integral of Eq. (4) consists of a fast-
oscillation function e−iC(s) and a slowly varying function
G(s), so that Fk vanishes [29]. This shows that the ef-
fectiveness of LEOs depends on C(t), the integral of the

pulse sequence in the time domain, but not details of c(t)
such as the shape or arrangement of these pulses [31].
The first term in G(t) is a constant, the second is the lin-
ear term of Fk with the modulus of the coefficient being
√

γ2 + (ωk − ω3 − Ω)2, and the last term is proportional
to F 2

k , which can be ignored if the variation of Fk is a
first order perturbation. Therefore, the requirement of
G(t) as a slow variable is consistent with a vanishing Fk

if C(t) is large. Furthermore, it is reasonable to expect
that nonperturbative LEO works well with small γ corre-
sponding to a strong non-Markovian environment. Note
that although this correlation function does not apply to
every environment, many correlation functions, e.g., the
1/f noise, could be decomposed into a finite summation
of this one with different γ’s and Ω’s [32]. Therefore our
scheme can be adapted to more general situations.
The LEO approach can be applied to protect the

NV spin (a V -type three-level system) from fluctuations
of the magnetic field. Compared to previous DD pre-
scriptions [28], this LEO suppresses the diffusion of the
ms = ±1 states by performing a nonperturbative control
field with compatible frequency in the order of ωNV. The
results shown in Fig. 1(b) apply even in the presence of
a much larger dissipative coupling than is often met in
practice. This is indicated by a value Γ ∼ ωNV, in the
order of GHz, while in practical situations, it is usually
less than 50 MHz. In this extreme case, the fidelity of
the system remains as large as 0.98 after 40 ns, which is
already much larger than a typical operation time ∼ 10
ns.
In summary, we presented a nonperturbative LEO ap-

proach to dynamical decoupling of an arbitrary multi-
level system, and found that the integral over the pulse
sequence is the most important quantity in determining
the effect of decoherence-suppression under proper av-
erage ratio of (pseudo-) duration time to (pseudo-) pe-
riod. This result is insensitive to fluctuations of the pulse
strength and period and robustly removes the system dis-
turbances due to environmental noise under imperfect
and noisy controls.
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