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Using the newly developed Matrix Product State (MPS) formalism for non-abelian Fractional
Quantum Hall (FQH) states, we address the question of whether a FQH trial wave function written
as a correlation function in a non-unitary Conformal Field Theory (CFT) can describe the bulk
of a gapped FQH phase. We show that the non-unitary Gaffnian state exhibits clear signatures of
a pathological behavior. As a benchmark we compute the correlation length of Moore-Read state
and find it to be finite in the thermodynamic limit. By contrast, the Gaffnian state has infinite
correlation length in (at least) the non-Abelian sector, and is therefore gapless. We also compute
the topological entanglement entropy of several non-abelian states with and without quasiholes.
For the first time in FQH the results are in excellent agreement in all topological sectors with the
CFT prediction for unitary states. For the non-unitary Gaffnian state in finite size systems, the
topological entanglement entropy seems to behave like that of the Composite Fermion Jain state at
equal filling.
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Our understanding of the Fractional Quantum Hall
(FQH) effect has benefited substantially from the use
of model wavefunctions [1–4]. These wavefunctions, al-
though not ground-states of realistic hamiltonians, are
nonetheless supposed to capture the universal behavior of
the state such as quasiparticle charge, statistics, braiding
in the gapped bulk, as well as electron and quasihole ex-
ponents on the gapless edge. In a seminal paper[4] Moore
and Read proposed to use conformal blocks, i.e. correla-
tion functions in a Conformal Field Theory (CFT), as a
building block to write down bulk model wavefunctions
for the ground state and its quasihole excitations. This
construction relies on a number of conjectures, the most
important being that such a model bulk wavefunction de-
scribes a gapped topological state. Another assumption
is that the universality class of the fractional quantum
Hall state - most notably the braiding and fusion prop-
erties of the excitations - can be read off directly from
the bulk CFT. Finally the bulk-edge correspondence is
usually assumed. It states that (most) properties of the
physical gapless edge states should be described by the
same CFT that was used to build the bulk wavefunctions.
Despite the nontrivial nature of these conjectures, there
is a large body of (mostly exact diagonalization) evidence
that supports the Moore-Read construction.

However, this program has been observed recently to
break down for non-unitary CFTs. While large sets of
bulk trial wavefunctions can be written as correlation
functions in a non-unitary CFT[5–9], the bulk and edge
CFT can no longer match. Indeed the edge CFT is a
low-energy effective theory describing the physical edge
states, and as any proper quantum field theory it has to

be unitary [10]. In that case one of the aforementioned
hypothesis has to break down : either the edge CFT
is different from the one used to write the bulk state -
which was shown to be unlikely, at least for the non-
unitary Gaffnian state [10]- or the bulk state itself has to
be gapless[11]. The Gaffnian state is also the prototype of
a two dimensional phase where one could study how gap-
less modes spoil the topological degrees of freedom[12].

Unfortunately, a direct numerical observation of the
pathology of the non-unitary state as a FQH model wave-
function has been plagued by the relatively small system
sizes[5, 13, 14] that can be reached within exact diago-
nalization and even with Jack polynomial techniques[15].
Thus the question of if and how the non-unitary states
fail to be bona fide gapped bulk states has remained un-
solved.

Recently, great progress[16–18] has been made in re-
writing many model states using an exact matrix prod-
uct state[19, 20] (MPS) description. This description al-
lows for efficient encoding of the states, basically allowing
- with excellent accuracy and controlled truncation pa-
rameter - the squaring of the sizes previously attained
with exact diagonalization. A detailed description of the
general method for obtaining the states and their entan-
glement spectra, approximation parameters, as well as
examples of the MPS description of a large number of
non-abelian unitary and non-unitary wavefunctions has
been provided in Ref. 18.

In this article, we use the MPS machinery to show
that model wavefunctions built from non-unitary CFTs
exhibit clear signatures of their pathological behavior.
We first analyze the topological entanglement entropy
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[21, 22] of the unitary Moore-Read and Z3 Read-Rezayi
and show that it accurately matches the CFT prediction
both for the ground and for the quasihole states. This
is the first time such an agreement is obtained for model
FQH states and all topological sectors. Indeed, previous
studies have been plagued by finite-size issues[23] or have
not been able to access all the topological sectors[16]. We
then perform the same analysis on the non-abelian non-
unitary Gaffnian wavefunction, and find that its topo-
logical entanglement entropy is that of any abelian state
at the same filling ν = 2/5. By adding quasiholes to
the Gaffnian wavefunction, we are able to accurately ob-
tain their quantum dimension from topological entropy
studies, and find it to be unity. This implies that the
quasiholes would be abelian, despite the fact that their
fusion rule is non-abelian. This suggests that the bulk of
the Gaffnian state is gapless. While the fate of the entan-
glement entropy in critical one dimensional models based
on non-unitary CFTs has been recently discussed[24], an
analogous study for two dimensional systems was miss-
ing until now. We test this by computing the gap of
the transfer matrix, which encodes the correlation length
of local observables. For the unitary Laughlin, Moore-
Read and Z3 Read-Rezayi state we find a finite correla-
tion length in every abelian and non-abelian sector, while
for the non-unitary Gaffnian we find that the correla-
tion length in the quasihole sector extrapolates to infinity
in the thermodynamic limit. In the electron sector the
extrapolation is equivocal since the Gaffnian correlation
length exhibits a level-crossing behavior.

One tool to extract topological information from the
ground state wave function is the (topological) entan-
glement entropy[21, 22, 25]. We consider the simplest
case of bipartite orbital entanglement on the cylinder be-
tween two semi-infinite parts A and B of the system in its
ground state |Ψ〉. This partition is characterized by the
reduced density matrix ρA = TrB |Ψ〉 〈Ψ| of subsystem
A, obtained by tracing out all the B degrees of freedom,
a procedure which uses, in the thermodynamic limit, only
the highest eigenvalue eigenstate of the MPS transfer ma-
trix, as detailed in Ref. 18. Among the various entropies
that have been considered as an entanglement measure-
ment, the entanglement entropy is the most popular one.
It is defined as the Von Neumann entropy associated with
ρA i.e. S = −TrA [ρA ln ρA]. For a system in d dimen-
sions with a finite correlation length ζ, the entanglement
entropy satisfies the area law[26]. For two dimensional
topological phases, Refs. [21] and [22] showed that the
first correction to the area law is a topological term:

SA ' αL− γ (1)

where L � ζ is the length of the boundary of region
A (the cylinder perimeter in our case) and α is a non-
universal constant. The sub-leading term γ is called the
topological entanglement entropy: it is a constant for a
given topologically ordered phase and is related to the to-
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FIG. 1. Entanglement entropy SA for the Moore-Read state
in the vacuum and sigma sectors (i.e. with a non-abelian
σ quasihole at positions ±∞) as a function of the cylinder
perimeter L and the three largest truncation parameters Pmax

that can be reached. For large L, we observe the saturation
due to the finite CFT truncation (the saturation increasing
with Pmax. γ is extracted through a linear fit where we ex-
clude the shaded regions. We consider only perimeters where
a convergence of SA as a function of Pmax to be lower than
10−2 has been reached. The extrapolated γvac. (resp. γqh.)
for the vacuum (resp. sigma) sector is in agreement with the
predicted value ln

√
8 (resp. ln 2). Insets: SA minus the area

law contribution αL for the vacuum (upper left corner) and
the sigma (lower right corner) sectors. The value of α which
is very close for both topological sectors (α ' 0.22/lB), is
extracted from the linear fit.

tal quantum dimension of the phase. Additional changes
in this term appear if regions A,B contain topological
(quasihole) excitations, allowing for the determination of
the specific quantum dimensions of each topological par-
ticle. For a given type of excitations a, the quantum
dimension da defines how the Hilbert space dimension
exponentially increases with the number of such excita-
tions. Each type of excitations corresponds to a topo-
logical sector. Abelian excitations have a quantum di-
mension equal to 1 while non-abelian ones have da > 1.
The topological entanglement entropy for a system with
topological charge a in region A is given by

γ = ln

(
D
da

)
(2)

where D =
√∑

a d
2
a is the total quantum dimension

characterizing the topological field theory describing the
phase. A state with abelian excitations, at filling factor
ν = p/q, such as the Laughlin states or more generally
the Jain’s composite fermions[3], has q abelian topolog-
ical sectors. Thus its topological entanglement entropy
is γ = log

(√
q
)
. We numerically obtain the topologi-

cal entanglement entropy for several states on an infinite
cylinder of perimeter L. The bi-partition is performed
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FIG. 2. Entanglement entropy SA for the Z3 Read-Rezayi
state in the vacuum sector and with a non-abelian quasihole
at each end of the infinite cylinder as a function of the cylin-
der perimeter L and the three largest truncation parameters
Pmax that can be reached. We use the same conventions than
those of Fig. 1, including for the insets. Note that the lower
accuracy on γ is due to the data at Pmax = 11. Consid-
ering only the two largest truncation parameters would give
γ = 1.40(3). The fitted value of α ' 0.25/lB is also very close
for both topological sectors.

perpendicular to the cylinder axis, such that the length
of the boundary between two regions is L. Our numeri-
cal results contain a truncation parameter, Pmax, whose
meaning is twofold : it is the maximum momentum we
use for the edge CFT fields in the auxiliary bond of the
MPS [18]; it is also the maximum descendant field level
in the truncated CFT used to build the MPS[27].

For the Laughlin state, the topological entanglement
entropy has been computed using a MPS representa-
tion in Ref. 16 and matches the theoretical prediction.
Beyond abelian states, the simplest example of a non-
abelian state is the Moore-Read state[4]. It has 6 topo-
logical sectors, 4 abelian ones and 2 non-abelian ones
with a quantum dimension dσ =

√
2. In Fig. 1, we show

the entanglement entropy as a function of the cylinder
perimeter for a for the Moore-Read state in the abelian
(or vacuum) sector and the sigma sector. We first fo-
cus on the vacuum sector. Two size effects are present
in the raw data: for very small perimeters, we are in a
regime where the Moore-Read state is not fully developed
(the ”thin torus” regime). For very large perimeters, the
entanglement entropy saturates due to the finite trun-
cation in the CFT. We hence present only the regime
where a clear area law of the entanglement entropy is
observed. We extrapolate to obtain the topological en-
tanglement entropy γvac. and find it in excellent agree-
ment with the conjectured value ln

√
8 ' 1.039 for the

groundstate. Adding a quasihole at each end of the in-
finite cylinder to access the sigma (i.e. quasihole) sector
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FIG. 3. Entanglement entropy SA for the Gaffnian state in
the vacuum and sigma sectors as a function of the cylinder
perimeter L and the three largest truncation parameters Pmax

that can be reached. We use the same conventions than
those of Fig. 1, including for the insets. The fitted value
of α ' 0.20/lB is also very close for both topological sec-
tors. Note that the difference of the entanglement entropies
between the two sectors at any perimeter (in the converged
region) is always lower than 0.02.
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FIG. 4. Correlation lengths ζ of the Laughlin ν = 1/3,
ν = 1/5, and the Moore-Read state for both the vacuum
and the quasihole sectors as a function of cylinder perimeter
L. A linear fit as a function of 1/L gives the thermodynam-
ical values ζ3/lB = 1.381(1) for ν = 1/3, ζ5/lB = 2.53(7) for
ν = 1/5, ζvac/lB = 2.73(1) for the Moore-Read vacuum sector
and ζqh/lB = 2.69(1) for the Moore-Read quasihole sector.

and extracting the corresponding γqh from Fig. 1 give a
non-abelian quasihole quantum dimension of dσ = 1.4,
again in excellent agreement with the CFT conjecture.
Note that as expected, the area law linear factor α given
by Eq. 1 is identical (within numerical accuracy) in both
topological sectors. This result holds true for each state
we have considered. Fig. 2 shows the data for the Z3

Read-Rezayi state. We again obtain excellent agreement
for the topological entanglement entropies with the CFT
predictions of γvac. = 1.44768 and γqh = 0.96647 for the
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ground-state and quasihole sectors, respectively.

In Fig. 3 we present the results for the non-unitary
Gaffnian state, both in the ground-state and with a σ
particle in side A. We find a clear area law in both
cases. Upon extrapolation, the topological entangle-
ment entropy is equal (within numerical error) between
these two cases, suggesting that the quantum dimen-
sion of the σ particle is 1 ± 0.02. This would corre-
spond to an abelian particle although its fusion rules
[18] are clearly non-abelian. The value of the topolog-
ical entanglement entropy is also within numerical er-
ror of log

√
5 = 0.804719 - the value for an abelian

state at filling 2/5, even though the state is non-abelian
and the value of the total quantum dimension computed
from the S-matrix leads to a clearly different value of
1.44768 for the vacuum sector and a quantum dimen-
sion of the σ particle of (1 +

√
5)/2. Note that a simi-

lar result was observed for classical stringnet models[28],
where the constant correction to the entanglement only
probes the abelian sector. Moreover, due to the small
range of accessible perimeter values, we cannot probe
any logarithmic correction to the area law which might
emerge in some critical model[29, 30]. While the re-
semblance of the entanglement entropy with that of an
abelian 2/5 state might not be numerically surprising -
considering the extremely large (> 93%) overlap of this
state with the abelian Jain state at the same filling fac-
tor - the abelian quantum dimension of the purportedly
non-abelian quasiholes is impossible to reconcile. This
is strong evidence that the Gaffnian state is not gapped
in the bulk, which casts a doubt on the validity of our
results for the Gaffnian entanglement entropy and quan-
tum dimensions. Indeed our calculation involves making
the cylinder infinitely long before extrapolating for large
perimeters L. For a gapless state it is unclear whether
this yields the same result as sending both length and
perimeter to infinity while keeping a finite aspect ratio.
Nevertheless this is an indication of the gapless nature of
the Gaffnian, which we are going to confirm and quantify
by looking for long range correlations.

We now numerically compute the bulk correlation
length in the Laughlin, Moore-Read and Gaffnian states.
This correlation length is intrinsically related to the gap
of the transfer matrix[31]. The correlation function of an
operator O(x) takes the form:

〈O†(x)O(0)〉 − 〈O†(x)〉〈O(0)〉 ∝ e−|x|/ζ (3)

where the correlation length ζ(L) = 2πl2B/(L log(λ1

λ2
))

can be expressed in terms of the largest and second
largest eigenvalues of the MPS transfer matrix λ1(L) and
λ2(L). L is the circumference of the cylinder where the
correlation function is computed and lB is the magnetic
length. In all the FQH states we considered we observed
that the MPS transfer matrix was always gapped at fi-
nite L, which leads to a finite correlation length ξ(L).

When describing a gapped physical system, the correla-
tion length ζ must remain finite in the thermodynamic
limit L → ∞. In Fig. 4 we show the correlation lengths
for the ν = 1/3 and ν = 1/5 Laughlin states. As ex-
pected, they quickly saturate to a constant value, con-
firming the gapped nature of the Laughlin states. Fig. 4
also provides the correlation length of the Moore-Read
wavefunction. In this situation, the MPS transfer matrix
is block diagonal in the abelian (1, ψ) and non-abelian
(σ) sector [18]. Hence two gaps exist, corresponding to
the two correlation lengths of the abelian and non-abelian
sectors. Both correlations lengths are finite in the ther-
modynamic limit and have roughly the same value as ob-
served in Fig. 4. Ref. 32 has found a correlation length of
resp. ζ ' 2.7lB for the Moore-Read state in the vacuum
sector, in agreement with our results.
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FIG. 5. Correlation lengths ζ of the Gaffnian state for both
the vacuum and the quasihole sectors as a function of cylinder
perimeter L. A linear fit as a function of 1/L for the correla-
tion lengths ζqh in the quasihole sector leads to an divergent
extrapolated value. In the vacuum sector, due to the level
crossing, it is difficult to make any reliable extrapolation.

In Fig. 5 we plot the correlation length for the non-
unitary Gaffnian state for both sectors. For the quasi-
hole (the field of scaling dimension −1/20 in the neu-
tral CFT[18]) in the thermodynamic limit the correlation
length diverges, signaling gaplessness. In the vacuum sec-
tor, the correlation length does not have a smooth behav-
ior. While for small cylinder perimeter L, the correlation
length seems to clearly extrapolate to a finite value, for
larger L the slope changes dramatically. This is due to
a level crossing in the second transfer matrix eigenvalue
λ2. Note that the system size where the level crossing
occurs is out of reach of previous techniques which are
limited to sizes around ' 17lB . While other works us-
ing the exact expression of the Gaffnian quasihole states
in terms of Jack polynomials[15] have indicated that the
state fails to screen the non-abelian quasihole, this is the
first clear calculation of the gapless nature of the non-
unitary Gaffnian state.

In this paper we have computed the topological en-
tanglement entropy for the Moore-Read, Z3 Read-Rezayi
and Gaffnian states for both the vacuum and the quasi-
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hole sectors. While for unitary states the total quantum
dimension and the quantum dimension of the individual
quasiholes matches the CFT predictions, for the Gaffnian
state, we find quantum dimensions identical to those of
the abelian FQH state at identical filling. We also com-
puted the correlation lengths in these states and find that
the unitary states have finite correlation lengths in the
thermodynamic limit, while the non-unitary Gaffnian has
diverging correlation length in at least the quasihole sec-
tor, signaling gaplessness.[33]

Acknowledgements We thank M. Zaletel, J. Dubail, P.
Bonderson, T. Grover, E. Ardonne, F. Pollmann, J-B.
Zuber, Z. Papic and Y.-L. Wu for discussions. BAB and
NR were supported by NSF CAREER DMR-0952428,
ONR-N00014-11-1-0635, MURI-130- 6082, NSF-MRSEC
DMR-0819860, DARPA - N66001-11-1-4110, Packard
Foundation, and Keck grant. NR was supported by the
Princeton Global Scholarship.

[1] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[2] B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[3] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[4] G. Moore and N. Read, Nuclear Physics B 360, 362

(1991).
[5] S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berd-

nikov, Phys. Rev. B 75, 075317 (2007).
[6] B. A. Bernevig and F. D. M. Haldane, Phys. Rev. B 77,

184502 (2008).
[7] B. A. Bernevig and F. D. M. Haldane, Phys. Rev. Lett.

100, 246802 (2008).
[8] B. Estienne, N. Regnault, and R. Santachiara, Nuclear

Physics B 824, 539 (2010).
[9] S. H. Simon, E. H. Rezayi, and N. Regnault, Phys. Rev.

B 81, 121301 (2010).
[10] N. Read, Phys. Rev. B 79, 245304 (2009).
[11] N. Read, Phys. Rev. B 79, 045308 (2009).
[12] P. Bonderson and C. Nayak, Phys. Rev. B 87, 195451

(2013).
[13] N. Regnault, M. O. Goerbig, and T. Jolicoeur, Phys.

Rev. Lett. 101, 066803 (2008).

[14] C. Toke and J. K. Jain, Phys. Rev. B 80, 205301 (2009).
[15] B. A. Bernevig, P. Bonderson, and N. Regnault, ArXiv

e-prints (2012), arXiv:1207.3305 [cond-mat.mes-hall].
[16] M. P. Zaletel and R. S. K. Mong, Phys. Rev. B 86, 245305

(2012).
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