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ABSTRACT 6 

It is discovered that the sixth order 6σ=720° (or 6:2) resonance is manifested for high intensity 7 

beams of linear accelerators through the space charge potential when the depressed phase 8 

advance per cell σ is close to and below 120° but no resonance effect is observed for σ above 9 

120°. Simulation studies show a clear emittance growth by this resonance and a characteristic 10 

six-fold resonance structure in phase space. To verify that this is a resonance, a frequency 11 

analysis was conducted and a study was performed of crossing the resonance from above and 12 

from below the resonance. Canonical perturbation is carried out to show that this resonance 13 

arises through perturbation of strong 2σ=360° (2:1) and 4σ=360° (4:1) space charge resonances. 14 

Simulations also show that the space charge 6σ=360° (or 6:1) resonance is very weak. 15 
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Recently many high intensity linear accelerators (linacs) have been designed and/or 1 

constructed like the SNS (USA) [1], the J-PARC (Japan) [2], and the KOMAC (Korea) [3]. For 2 

high intensity accelerators, it is the utmost goal to minimize the beam loss of halo particles by 3 

avoiding or minimizing contributions of various halo mechanisms. Besides mismatch [4], studies 4 

show that many nonlinear phenomena can be manifested even for a linear accelerator through the 5 

nonlinear potential of the self-field. Since the finding that the 2νx-2νy=0 space charge coupling 6 

resonance induces halo in the ring [5], further studies of halo formation and/or emittance growth 7 

by space charge and resonances were reported in [6] and space charge coupling resonance 8 

studies of a linear accelerator such as [7]. Here νx(y) is horizontal (vertical) tune of a circular 9 

accelerator. A fast halo formation mechanism by a non-round beam was found for the SNS linac 10 

[8] and experimentally verified [9]. Recently it was discovered that the 4σ=360° (or 4:1) 11 

resonance is manifested for high intensity beams of linear accelerators [10] and this resonance 12 

was experimentally verified [11]. 13 

In this paper, we report the discovery of the sixth order 6σ=720° (6:2) resonance is excited 14 

through perturbation of 2:1 and 4:1 resonances for high intensity beams of linear accelerators 15 

through the space charge potential. A resonance can be expressed as m·σ=n·360°, where m 16 

represents the order of the resonance and n represents the nth harmonic component of the 17 

potential. We are reporting an m=6, n=2 resonance that generates a six-fold resonance structure, 18 

meaning that the resonance is a 6th order resonance driven by the 2nd harmonic component. This 19 

resonance should not be confused with the 3σ=360° resonance that generates a three-fold 20 

resonance structure. Even order resonances dominate because the geometry of accelerators 21 

generally has x (y) mid-plane symmetry and generated beam distributions are symmetric and 22 

have very small skew potential components such as ~x3 (or y3) that drives 3σ=360° (or 3:1) 23 
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resonance. Even though this resonance is weak compared with the fourth order 4σ=360° space 1 

charge resonance, it is worthwhile to report this sixth order resonance of high intensity linear 2 

accelerators.  3 

Numerical simulation of a linac is performed with a well matched beam with 50 000 to 100 4 

000 macro-particles using the PARMILA code [12]. The transverse focusing of the linac lattice is 5 

provided by an FFDD or FD [F(D): focusing(defocusing) quad] lattice. Here FFDD means an 6 

FOFODODO lattice. A 10 emA 40Ar+10 beam with initial beam energy of 5 MeV/u and initial 7 

normalized rms emittance εx = εy = 0.115 [mm mrad], εz=0.130 [mm mrad] is used for the 8 

simulations. The initial beam distribution is a Gaussian density distribution truncated at 3 9 

standard deviations. The phase advance depression due to space charge effects is about -20°. The 10 

coupling between the transverse and longitudinal planes is minimal because the depressed 11 

longitudinal phase advance σz is about 10°, which is well separated from the transverse 12 

depressed phase advance. 13 

The numerical simulations show that the 6σ=720° resonance of high intensity linear 14 

accelerators is manifested through the space charge potential for a variety of beams that have a 15 

nonlinear space charge potential such as Gaussian, water-bag, etc. In Fig. 1, the sum of output 16 

transverse emittances is plotted vs. the depressed phase advance σ of the linac lattice. Each data 17 

point is obtained by maintaining σ constant throughout a linac. No resonance effect is observed 18 

when σ is above 120° and the observed emittance growth is small which is due to the tiny initial 19 

mismatch of the generated initial Gaussian beam.  20 

It should be noted that maximum emittance growth takes place at around σ=112°. For the 21 

σ=114° case in Fig. 1, the resonance islands are rather well separated from the main body of the 22 
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beam as shown in Fig. 2, leading to emittance growth and a clear six-fold structure of the 1 

6σ=720° resonance.  2 

 3 

FIG. 1. Plot of the transverse rms emittance vs. depressed phase advance per cell σ showing the 4 

emittance growth induced by the 6σ=720° (or 6:2) space charge resonance of linac beams. The 5 

small emittance growth ~5 % observed for > 120° is caused by a tiny initial mismatch of the 6 

generated initial Gaussian beam.  7 

 8 

FIG. 2. Plot of the beam distribution in phase space for the linac case with σ=114° in Fig. 1. Six 9 

stable islands are rather well separated from the main body of the beam. The depressed phase 10 

advance σ is maintained pretty constant throughout the linac lattice.  11 
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 1 

One characteristic of the resonance is the behavior difference when we cross the resonance 2 

from below and from above the resonance. This is due to the stable fixed points of the resonance. 3 

When we cross the resonance from above, the six stable fixed points emerge from the origin and 4 

move away, thus scooping particles from the core (see the plots of Fig. 3, as we cross the 5 

resonance from above). On the other hand, when we cross the resonance from below, stable 6 

fixed points move in from far toward the origin. So the particles cannot be captured by the stable 7 

fixed points, and they move around the fixed points (see Fig. 4). Figure 3 illustrates how the 8 

beam distribution evolves as one crosses the resonance from above the resonance, where σ varies 9 

from 121° to 108° (downward crossing) along the linac lattice. The plots from top to bottom 10 

show how six stable fixed points move away from the beam. On the other hand, when one 11 

crosses the resonance from below the resonance (upward crossing), stable fixed points move in 12 

from afar toward the origin and the particles cannot be captured by the stable fixed points. 13 

Particles rather move around the fixed points as shown in Fig. 4.  14 

Depending on the direction to cross the 6σ=720° resonance, the emittance growth also differs 15 

for the same reason. Figure 5 shows the plot of emittance growth of resonance crossing vs. a 16 

parameter S ≡ (Δσ/360°)2/(dσ/dn/360°) [13,14], where Δσ (=2π ቀߦ௫  ீమమఋమቁ in Eq. (10)) is the 17 

tune spread (proportional to the stopband width of the resonance[14]) and dσ/dn is the phase 18 

advance change per cell. The parameter S is equivalent to g2/(Δν/Δn) in [13] and is a measure of 19 

how fast the resonance crossing is and how strong the resonance is. Two groups of data show 20 

distinct difference due to the resonance characteristics. It should be noted that the emittance 21 
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growth for the upward crossing scales as S1/2, while as S for the downward crossing. A large 1 

value of S means slow resonance crossing or wide resonance stopband.  2 

3 

4 

 5 



 7

FIG. 3. Plots of beam distribution evolution as one crosses the 6σ=720° (or 6:2) resonance from 1 

above the resonance (from the top to the bottom plot in sequential order). One observes that the 2 

six stable fixed points emerge from the origin and move away, scooping particles.  3 

 4 

FIG. 4. Plot of beam distribution as one crosses the 6σ=720° (or 6:2) resonance from below the 5 

resonance. One observes that the particles are not captured by the stable fixed points and they 6 

move around stable islands.  7 

 8 

FIG. 5. Plot of emittance growth when one crosses the 6σ=720° resonance from above 9 

(downward crossing) and from below (upward crossing). Here S is defined as 10 
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S≡(Δσ/360°)2/(dσ/dn/360°) where Δσ is the tune depression (proportional to the stopband width 1 

of the resonance) and dσ/dn is the phase advance change per cell.  2 

 3 

Another characteristic of the resonance is the existence of resonant frequency component. 4 

Due to the fixed points of the resonance, some particles have the same frequency as the driving 5 

frequency of the 6σ=720° resonance. A Fourier analysis is performed on the rms beam size along 6 

the linac lattices with σ=112° and 125° respectively. A clear 6σ=720° resonance peak is 7 

observed at the particle tune value of 1/3 (=120°/360°) for the linac with σ=112°, as shown in 8 

Fig. 6. Here particle tune is defined as the number of transverse oscillations particles make over 9 

one cell. No resonance peak is observed at the tune of 1/3 when σ=125° just above the resonance. 10 

It is evident that there is no resonance effect when σ > 120°.  11 

 12 

FIG. 6. Plot of power spectrum of the frequency analysis on the rms beam size (2nd order 13 

moment) for σ=112° and 125°. The particle tune is defined as the number of transverse 14 

oscillations that individual particles make over one period. When particles are trapped by the 15 

sixth order resonance stable islands, they make 1/3 turn over one lattice cell. For the case with σ 16 
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< 120°, we see a clear 6σ=720° resonance peak at the tune of 1/3 (120°/360°), while no 1 

resonance peak is observed for the case with σ > 120°. It is observed that the space charge 2 

6σ=360° resonance is very weak and we observe practically no emittance growth associated with 3 

this resonance for a wide range of σ.  4 

 5 

Simulations also show that the space charge 6σ=360° resonance is very weak and no 6 

emittance growth is observed. This demonstrates that the 6σ=720° resonance is not from the x6 7 

term of the space charge potential in Eq. (2). To understand the 6σ=2·360° (or 6:2) resonance, 8 

we explore the space charge Hamiltonian for 2D Gaussian beam, given by 9 ࢞)ܪ, ; (ݏ ൌ మೣାమ ଶ  ଶೣ ଶݔ  ଶ ଶݕ  ௦ܸ      (1) 10 

௦ܸ ൌ െ ௦2ܭ ቈ ܽ)ଶܽݔ  ܾ)  ܾ)ଶܾݕ  ܽ)  ܽ)௦8ܽଶܭ  ܾ)ଶ 2  3ݎ ସݔ  ݎ2 ଶݕଶݔ  1  ଷݎ3ݎ2  ସ൨ݕ

െ ೞଵସସయ(ା)య ቂ଼ାଽାଷమହ ݔ  ଷ(ଷା) ଶݕସݔ  ଷ(ଷାଵ)య ସݕଶݔ  ଼మାଽାଷହఱ ቃݕ   11 (2)  ڮ

where s is the longitudinal coordinate on reference orbit, Kx(s) and Ky(s) are focusing field 12 

strength, a2=βxεx, and b2=βyεy are beam size and r=b/a. Since we are interested in the 6:2 13 

resonance in horizontal plane, the 1D Hamiltonian can be approximated as  14 ܪ ൌ మೣଶ  ௫ܭ ௫మଶ െ ଶܸݔଶ  ସܸݔସ െ ܸݔ   15 (3)              ڮ

where Vi are coefficients of space charge potential.  16 

Since Kx, V2 and V4 are periodic functions of period L, using Floquet transformation with 17 ݔ ൌ ඥ2ߚ௫ܬ௫ cos ௫ߔ , where ߔ௫ ൌ ߮௫  ߯௫ െ ߠ௫ߥ  with ߯௫ ൌ  ଵఉೣ ௦ݏ݀ ௫ߥ , ൌ σ/360° , 18 θ ൌ  ௫ are canonical conjugate variables, we obtain the Hamiltonian as 19ߔ ௫ andܬ and ,ܮ/ݏߨ2

follows: 20 
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ܪ ൌ ௫ܬ௫ߥ െ ଶగ ଶܸߚ௫ܬ௫ െ ଶగ ଶܸߚ௫ܬ௫ cos ௫ߔ2  ଶగ ସܸߚ௫ଶܬ௫ଶ ଷାସ ୡ୭ୱ ଶఃೣାୡ୭ୱ ସఃೣଶ .   (4) 1 

To study resonance, we carry out Fourier decomposition to the Hamiltonian in lattice 2 

harmonics. Since both 2:1 and 4:1 resonances are relevant to 6:2 resonance, we approximate the 3 

Hamiltonian as follows:  4 ܪ ൌ ௫ܬ௫ߥ െ ௫ܬ௫ߦ  ௫௫ߙ మೣଶ  ௫ܬଶܩ cos(2߮௫ െ ߠ  (ଶߟ  ௫ଶܬସܩ cos(4߮௫ െ ߠ  (ସߟ   5 (5)  ڮ

where ߦ௫ ൌ ଵଶగ  ଶܸߚ௫݀ݏ ௫௫ߙ , ൌ ଷଶగ  ସܸߚ௫ଶ݀ݏ ଶ݁ఎమܩ , ൌ െ ଵଶగ  ଶܸߚ௫݁ሾଶఞೣି(ଶఔೣିଵ)ఏሿ݀ݏ , 6 

ସ݁ఎరܩ ൌ ଵସగ  ସܸߚ௫ଶ݁ሾସఞೣି(ସఔೣିଵ)ఏሿ݀ݏ . The 6:2 resonance of the space charge potential in Eq. 3 7 

is weak as evidently shown in numerical simulations. In order to understand the strong 6:2 8 

resonance, we need to carry out canonical perturbation to strong 2:1 and 4:1 resonances. 9 

It is known that a resonance can be produced by two strong resonances, e.g. 2:1 and 4:1 10 

resonances can generate a 6:2 resonance. Using a generating function,  11 ܨଶ(߮௫, (௫ܫ ൌ ߮௫ܫ௫  (௫ܫ)ଶܤ sin(2߮௫ െ ߠ  (ଶߟ  (௫ܫ)ସܤ sin(4߮௫ െ ߠ   ସ)     (6) 12ߟ

where (߮௫, ,௫) and (߰௫ܬ  ସ terms are chosen to cancel out the 2:1 and 4:1 resonances respectively, we find the new 14ܤ ଶ and 13ܤ ௫) are old and new conjugate phase space coordinates, andܫ

Hamiltonian as  15 

ෙܪ ൎ ௫ܫ௫ߥ െ ௫ܫ௫ߦ  ௫௫ߙ ௫ଶ2ܫ  ௫ߥ) െ ௫ߦ  ܬ߂(௫ܫ௫௫ߙ  ௫௫2ߙ  ଶܬ߂

                          (ܫ௫ܩଶ െ ଶܥ(ଶܤ  ସܩ௫ଶܫ) െ ସܥ(ସܤ  ସܩସܥ௫ܫ2) െ  16 (7)     ܬ߂(ଶܩଶܥ

where ΔJ ൌ ௫ܬ െ ௫ܫ ൌ ଶܥଶܤ2  ସ, ܵܥସܤ4 ൌ sin(݊߮௫ െ ߠ  ܥ ,(௫ߟ ൌ cos(݊߮௫ െ ߠ   ௫). 17ߟ

The new Hamiltonian becomes 18 

ෙܪ ൌ ௫ܫ௫ߥ െ ௫ܫ௫ߦ  ௫௫ߙ ௫ଶ2ܫ  ଶܩଶܤ2)   ଶଶܥ(௫௫ߙଶܤ2

(8ܤସܩସܫ௫  ସଶܥ(௫௫ߙସଶܤ8  ௫ܫଶܩ)  ଶܤଶߜ   ଶܥ(௫ܫ௫௫ߙଶܤ2
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(ܩସܫ௫ଶ  ସܤସߜ  ସܥ(௫ܫ௫௫ߙସܤ4  ଶܩସܤ4)  ௫ܫସܩଶܤ4   ସ    (8) 1ܥଶܥ(௫௫ߙସܤଶܤ8

where ܥଶ  and ܥସ  corresponds to the 2:1 and 4:1 resonance driving terms, ܥଶܥସ  can be 2 

combined into the 6:2 resonance and ߜ ൌ ௫ߥ)݊ െ (௫ߦ െ 1. 3 

Setting ܤଶ ൌ െ ீమூೣఋమାଶఈೣೣூೣ ସܤ , ൌ െ ீరூೣమఋరାସఈೣೣூೣ  to remove the 2:1 and 4:1 resonances in the 4 

Hamiltonian, and identifying ܥۃଶۄ ൌ ۄଶܵۃ ൌ 1/2 for detuning, we obtain  5 ܪෙ ൎ ቀߥ௫ െ ௫ߦ െ ீమమఋమቁ ௫ܫ  ௫௫ߙ ቀ1  6 ீమమఋమమቁ ூೣమଶ  ௫ଶܫ:ଶܩ cos(6߰௫ െ ߠ2  ଶߟ   ସ)   (9) 6ߟ

with ܩ:ଶ ൌ െ2 ீమீరఋమఋర ௫ߥ6) െ ௫ߦ6 െ 2) near the 6:2 resonance. The resonance driving term is 7 

explicitly shown above. When the betatron tune is near 2/6, we find ߜଶ ൏ ସߜ ,0  0 and 8 (6ߥ௫ െ ௫ߦ6 െ 2)  0; thus ܩ:ଶ  0 . We also note that the resonance driving strength is 9 

proportional to ܫ௫ଶ instead of ܫ௫ଷ of the normal 6:1 or 6:2 resonances.  10 

The Hamiltonian near the 6:2 resonance is given by Eq. 9. We transform the Hamiltonian into 11 

resonance rotating frame by the canonical transformation ܨଶ ൌ ቀ߰௫ െ ଵଷ ߠ  ଵ ଶߟ  ଵ ସቁߟ  we 12 ,ܫ

find the conjugate phase space coordinates ܫ ൌ ߰ ௫, andܫ ൌ ቀ߰௫ െ ଵଷ ߠ  ଵ ଶߟ  ଵ  ସቁ. The new 13ߟ

Hamiltonian is  14 H ൌ ቀߥ௫ െ ଵଷ െ ௫ߦ െ ீమమఋమቁ ܫ  ௫௫ߙ ቀ1  6 ீమమఋమమቁ ூమଶ  ଶܫ:ଶܩ cos 6߰       (10) 15 

Analysis of this Hamiltonian shows clearly that the 6:2 resonance must occur when ߥ௫ െ ௫ߦ െ16 

ீమమఋమ ൏ ଵଷ (or σ ൏ 120°) as shown in the numerical simulations.  17 

The most important result presented in this paper is that the sixth order 6σ=720° resonance in 18 

high intensity linear accelerators arises through the second order perturbation to strong 2σ=360° 19 

(or 2:1) and 4σ=360° (or 4:1) space charge resonances. This was never reported before for linear 20 
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accelerators. Canonical perturbation was performed and the final Hamiltonian is used to prove 1 

that the resonance has to occur below the 120 degree, not above. 2 
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