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Vanadium dioxide(VO2) is a paradigmatic example of a strongly correlated system that undergoes
a metal-insulator transition at a structural phase transition. To date, this transition has necessi-
tated significant post-hoc adjustments to theory in order to be described properly. Here we report
standard state-of-the-art first principles quantum Monte Carlo (QMC) calculations of the structural
dependence of the properties of VO2. Using this technique, we simulate the interactions between
electrons explicitly, which allows for the metal-insulator transition to naturally emerge, importantly
without ad-hoc adjustments. The QMC calculations show that the structural transition directly
causes the metal-insulator transition and a change in the coupling of vanadium spins. This change
in the spin coupling results in a prediction of a momentum-independent magnetic excitation in the
insulating state. While two-body correlations are important to set the stage for this transition,
they do not change significantly when VO2 becomes an insulator. These results show that it is now
possible to account for electron correlations in a quantitatively accurate way that is also specific to
materials.

Systems of strongly correlated electrons at the border
between a metal-insulator transition can result in a vari-
ety of unique and technologically useful behavior, such
as high-temperature superconductivity[1] and collossal
magnetoresistance[2]. In vanadium dioxide (VO2), the
metal-insulator transition (MIT) occurs at T = 340K
[3], at which the conductivity decreases by more than
4 orders of magnitude. This MIT is accompanied by a
structural change from rutile (P42/mnm) to monoclinic
(P21/c) [4], as well as a transition in the magnetic sus-
ceptibility from a paramagnet-like Curie-Weiss law to
a temperature-independent form. In the rutile phase,
the vanadium atoms are located at the centers of octa-
hedra formed by the oxygen atoms; chains of equidis-
tant vanadium atoms lie along the c axis ([001]). In the
low-temperature monoclinic phase, vanadium atoms shift
from the centers of the oxygen octahedra and form a zig-
zag pattern consisting of V dimers. It is a long-standing
question whether the MIT is primarily caused by the
structural change that doubles the unit cell (Peierls dis-
tortion), or by correlation effects that drive the system
to become insulating [5–7], or potentially some mixture
of the two.

The metal-insulator transition in VO2 is unusually
challenging to describe. Standard density functional the-
ory (DFT) [8, 9] obtains metallic states for both struc-
tures, while corrections based on an effective Hubbard
U [9, 10] or hybrid functionals[11] often obtain insulating
states for both structures. Similarly, DFT+DMFT[7, 12,
13] and DFT+GW[14–16] calculations indicate that how
the correlation is treated changes the calculated proper-
ties dramatically. Therefore, while they are descriptive
and valuable techniques, their reliability is uncertain in a
predictive capacity. This issue is a severe constraint for
the design and study of correlated electron systems.

In this study, we use the explicitly correlated fixed-
node diffusion quantum Monte Carlo (FN-DMC) [17]
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FIG. 1. FN-DMC energies of VO2 with trial wave functions
from DFT of different hybrid functionals. All the energies are
relative to monoclinic AFM state: −2830.836(2)eV.

to investigate the electronic structures of the rutile and
monoclinic VO2 from first principles. FN-DMC has been
shown to be a highly accurate method on other transi-
tion metal oxides[18, 19]. In this method, one explic-
itly samples many-body electronic configurations using
Coulomb’s law for interactions, which allows for the de-
scription of correlation effects without effective param-
eters. We show that FN-DMC correctly characterizes
the electronic structure and magnetic response of VO2

in the two phases. Our calculations provide quantita-
tive microscopic details of the structure-dependent spin
couplings between vanadium atoms. It clearly reveals
how the structural distortion changes the interatomic hy-
bridization between vanadium and oxygen, which results
in a significant change of the superexchange magnetic
coupling between vanadium atoms. Monoclinic VO2 is
in a non-magnetic singlet state consisting of spin dimers
due to strong intradimer coupling. The calculations con-
tain a singlet-triplet spin excitation of 123(6) eV in mon-
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FIG. 2. (Color online) FN-DMC energetic results: (a)
per VO2 unit for different magnetically ordered states,
spin-unpolarized, ferromagnetic (FM), and antiferromagnetic
[AFM and AFM (intra)]. Energies are referenced to AFM
monoclinic VO2.(b) Optical gaps for various states. (c) Spin
density for various states.

oclinic VO2, which can be verified in experiment to test
the predictive power of this method.

The calculations were performed as follows. The crys-
tal structure of the rutile and monoclinic phases were
taken from experiment [21]. DFT calculations were per-
formed using the CRYSTAL package, with initial spin
configurations set to aligned, anti-aligned, or unpolarized
vanadium atoms. Different exchange-correlation func-
tionals with varying levels of Hartree-Fock exchange were
used:

Exc = (1− p)EPBEx + pEHFx + EPBEc (1)

where EPBEx and EPBEc are the Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functionals respectively.
The simulations were performed on a supercell includ-
ing 16 VO2 formula units with 400 valence electrons. A
4 × 4 × 8 Monkhorst-Pack k-grid was chosen for sam-
pling the first Brillouin zone of the simulation cell. A
Burkatzki-Filippi-Dolg (BFD) pseudopotential [22, 23]
was used to represent the He core in oxygen and Ne
core in vanadium. The band structure obtained using
the BFD pseudopotential shows good agreement with the
all-electron DFT calculation [24] (using PBE functional).
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FIG. 3. Temperature dependence of magnetic susceptibil-
ity obtained by Ising model simulation on VO2 lattice, with
magnetic coupling from FN-DMC compared to results from
Zylbersztejn[6] and Kosuge[20]. There has been an overall
scale applied on the data, and the transition temperature is
indicated by the verticle dashed line.

The result of the DFT calculations is a set of Slater de-
terminants made of Kohn-Sham orbitals that have vary-
ing transition metal-oxygen hybridization and spin or-
ders. A Jastrow correlation factor was then added to
these Slater determinants as the trial wave functions for
quantum Monte Carlo calculations [25]. Total energies
were averaged over twisted boundary conditions and fi-
nite size errors were checked to ensure that they are neg-
ligible (see Supplementary Information). The fixed-node
error in FN-DMC was checked by comparing the ener-
getic results from different trial wave functions from DFT
calculations with different p in Eqn 1. The trial wave
functions corresponding to the 25% Hartree-Fock mixing
(PBE0 functional [26]) produce the minimum FN-DMC
energy (Fig 1). The behavior in VO2 is commonly seen
in other transition metal oxides [27]. Thus, all our FN-
DMC results in the main manuscript were produced us-
ing 25% mixing. The gap was determined by promoting
an electron from the highest occupied band to the lowest
unoccupied orbital in the Slater determinant, then using
that determinant as a trial function for FN-DMC.

The energetic results of the quantum Monte Carlo cal-
culations are summarized in Fig 2. Both the rutile and
monoclinic structures have lowest energy with antiferro-
magnetic ordering of the spins. The unpolarized trial
function has sufficiently high energy to remove it from
consideration of the low energy physics. The energy dif-
ference between the ferromagnetic and antiferromagnetic
orderings changes from 24(6) meV to 123(6) meV from
the rutile to monoclinic structure. The energy difference
between the lowest energy spin orderings for rutile and
monoclinic is 10(6) meV, which is within statistical un-
certainty of zero. The latent heat is 44.2(3) meV[28];
the small descrepancy may be due to either finite tem-
perature or nuclear quantum effects, or fixed node er-
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ror. In the monoclinic structure, the vanadium atoms are
dimerized, which allows for a type of magnetic ordering
in which the intra-dimer vanadium dimers are aligned.
This ordering increases the energy by 13(6) meV.

The lowest energy wave functions all have magnetic
moments on the vanadium atoms close to 1 Bohr magne-
ton. In the rutile structure, the spins are coupled with a
small superexchange energy along the c axis. In the mon-
oclinic structure, the spins are coupled strongly within
the vanadium dimers and weakly between them. The
spin coupling within the dimers should give rise to a spin
excitation with little dispersion at approximately 123(6)
meV, which could potentially be observed with neutron
spectroscopy. This excitation has been proposed in the
past by Mott[29]; our results here provide a precise num-
ber for this excitation.

To study whether the magnetic behavior from the en-
ergies in Fig 2 are consistent with experiment, we make a
simple Ising model. In our model, the spins are on vana-
dium sites, and we only consider couplings between ad-
jacent sites: (1)J1 – intra-dimer coupling; (2) J2 – inter-
dimer coupling; (3) Jint – nearest inter-chain coupling
(see Fig. 3). We assume that the energy for a magnetic
state takes the following form,

E = J1
∑

intradimer<i,j>

σiσj + J2
∑

interdimer<i,j>

σiσj

+Jint
∑

interchain<i,j>

σiσj + E0 . (2)

We fit J1 and J2 to the energetic results of the FM, AFM,
and AFM(intra) orderings. For the monoclinic structure,
J1 = 123 meV, J2 = 13 meV, while for the rutile struc-
ture J1 = J2 = 12 meV. Since we did not compute the
inter-chain coupling strength Jint, we set it to be 2.5 meV
which is reasonably small compared to the intra-chain
coupling. The result is not sensitive to the inter-chain
coupling as long as it is small. We then perform a Monte
Carlo simulation is on a 10× 10× 10 super cell, in which
the finite size effect has been checked to be small. The re-
sults are presented in Fig 3. The Curie-Weiss behavior of
the magnetic susceptibility above the transition temper-
ature is reproduced very well, while the flat susceptibility
below the transition is also reproduced.

Moving to the gap properties (Fig 2b), the gap of the
low-energy AFM ordering in the rutile structure is zero,
while the gap in the monoclinic is 0.8(1) eV. This com-
pares favorably to experiment, which have gaps of zero
and 0.6–0.7 eV[30]. Meanwhile, in the higher energy FM
ordering, the monoclinic structure has a minimal gap of
0.42(7) eV and the rutile structure has a gap of 0.0(1)
eV, both in the spin-majority channel. If there are not
unpaired electrons on the vanadium atoms, then the gap
is zero.

From the above energy considerations, a few things be-
come clear about the results of the FN-DMC calculation.

The gap formation is not due to a particular spin orien-
tation, so the transition is not of Slater type. However,
it is dependent on the formation of unpaired electrons on
the vanadium atoms. These behaviors might lead one to
suspect that the transition is of Mott type, since the gap
in the monoclinic structure is a d→ d transition. In the
classic Mott-Hubbard model, the metal-insulator transi-
tion is a function of U/t, where U is the on-site repulsion
and t is the site-to-site hopping.

To make the physics more clear, we connect the de-
tailed quantum results to an approximate low-energy
Hubbard-like model. We define the V sites and O sites
by the Voronoi polyhedra surrounding the nuclei. For
a given sample in the FN-DMC calculation, we evalu-
ate the number of up spins n↑i and the number of down

spins n↓i on a given site i. We then histogram the joint
probability to obtain a set of functions ρi,j,σi,σj

(nσi
i , n

σj

j ),
where i, j are site indices and σi, σj are spin indices. The
connection to t and U are made through covariances of
these number operators. t is connected to the covariance
in the total number of electrons on a site i, ni = n↑i + n↓i
with site j: 〈(ni−〈ni〉)(nj−〈nj〉)〉. If this charge covari-
ance is large, then the two sites share electrons and thus
t between those two sites is large. U/t̄, where t̄ is the
average hopping, is connected to the covariances in the
number of up electrons and down electrons on a given
site: 〈(n↑i − 〈n

↑
i 〉)(n

↓
i − 〈n

↓
i 〉)〉. This quantity, which we

term the onsite spin covariance, is zero for Slater deter-
minants and is a measure of the correlation on a given
site.

Fig 4a shows the covariances evaluated for the AFM
ordering of the two structures of VO2. The most striking
feature is that the charge covariance changes dramati-
cally between the two structures. This feature can also
be seen in the charge density in Fig 4c. The dimeriza-
tion causes a large change in the hybridization between
vanadium and oxygen atoms. In particular, the largest
hybridization is now not within the dimers, but between
the vanadium atoms and the oxygen atoms in the adja-
cent chain, denoted am in Fig 4b. The intra-dimer hy-
bridization is enhanced, and the inter-dimer hybridiza-
tion is suppressed. There are thus large rearrangements
in the effective value of t, although the average value t̄ is
approximately constant.

On the other hand, the onsite unlike spin covari-
ance does not change within stochastic uncertainties. In
Fig 4b, the joint probability function of n↑ and n↓ aver-
aged over vanadium atoms with a net up spin are shown
for both rutile and monoclinic phases. The correlations
between up and down electrons are identical within sta-
tistical uncertainties in the two structures. Therefore,
U/t̄ does not change very much between the two struc-
tures. A one dimensitional Hubbard model would have
U/t̄ ' 2.0 to obtain the unlike spin covariance that we
observe, which puts VO2 in the moderately correlated
regime.
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FIG. 4. (Color online) Change of V-O hybridizations manifested through: (a) Inter-site charge (ni), and unlike-spin (ni↑ or
ni↓) covariance quantified as 〈OiOj〉 − 〈Oi〉〈Oj〉, where Oi is the onsite value of specific physical quantities. The inter-site
covariance between a chosen vanadium center and the surrounding atoms is plotted as a function of the inter-atomic distance.
(b) Onsite spin-resolved probability distribution on vanadium atoms – ρ(n↑i , n

↓
i ). (c) Spin and charge density of the rutile and

monoclinic VO2. Figures on the left panel are 3D isosurface plots of spin density, and on the right panel are contour plots of
spin and charge density on the [110] plane.

By performing detailed calculations of electron corre-
lations within VO2, we have shown that it is possible to
describe the metal-insulator transition by simply chang-
ing the structure. To obtain the essential physics, it ap-
pears that the change in structure is enough to cause the
metal-insulator transition. As has been noted before[15],
the calculated properties of VO2 are exceptionally sen-
sitive to the way in which correlation is treated. It is
thus a detailed test of a method to describe this transi-
tion. Fixed node diffusion quantum Monte Carlo passed
this test with rather simple nodal surfaces, which is en-
couraging for future studies on correlated systems. This
method, historically relegated to studies of model sys-
tems and very simple ab-initio models, can now be ap-
plied to ab-initio models of correlated electron systems
such as VO2 and other Mott-like systems[18, 19, 31].

From the quantitatively accurate simulations of elec-
tron correlations, a simple qualitative picture arises. In
both phases, there are net spins on the vanadium atoms
with moderate electron-electron interactions compared to
the hopping. In the rutile phase, the vanadium oxide
chains are intact with large hopping and small superex-
change energy and thus the material is a correlated para-
magnetic metal. In the monoclinic phase, the dimeriza-
tion reduces the interdimer hopping, primarily by inter-

chain V-O coupling. The intradimer magnetic coupling
increases because of an increase of intradimer V-O cou-
pling. The spins then condense into dimers and a gap
forms. This can be viewed as a spin Peierls-like transi-
tion.

The results contained in this work, alongside other
recent results show that the dream of simulating the
many-body quantum problem for real materials to high
accuracy is becoming achievable. This accomplishment
is a lynchpin for the success of computational design of
correlated electron systems, since these calculations can
achieve very high accuracy using only the positions of the
atoms as input. We have demonstrated that clear predic-
tions for experiment can be made using ab-initio quan-
tum Monte Carlo techniques, in particular the value of
the singlet-triplet excitation in the spin-dimers of VO2.
If this prediction is verified, then it will be clear that
these techniques can provide an important component to
correlated electron systems design.
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