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Motivated by the topologically insulating (TI) circuit of capacitors and inductors proposed and tested in
arXiv:1309.0878, we present a related circuit with less elements per site. The normal mode frequency matrix of
our circuit is unitarily equivalent to the hopping matrix of a quantum spin Hall insulator (QSHI) and we identify
the class of perturbations that do not backscatter the circuit’s edge modes. The idea behind these models is
generalized, providing a platform to simulate tunable and locally accessible lattices with arbitrary complex
spin-dependent hopping of any range. A simulation of a non-Abelian Aharonov-Bohm effect using such linear
circuit designs is discussed.

PACS numbers: 42.70.Qs, 03.65.Vf, 78.67.Pt

The realization that electrons propagating on edges of two-
dimensional topological insulators at zero temperature are
protected from certain disorder [1–5] has spurred research
simulating these and similar edge effects in photonic/phononic
systems [6–9] (reviewed in [10]). The existence of edge
modes whose energies lie within a given bulk gap of a nonin-
teracting tight-binding Hamiltonian can be traced to a certain
property of the corresponding hopping matrix [11]. Namely,
a topologically nontrivial hopping matrix is characterized by
having a nontrivial value of some topological invariant at that
bulk gap. Therefore, the problem of engineering edge modes
in bosonic systems can be reduced to making sure that time
evolution is governed by some topologically nontrivial ma-
trix. Many efforts emulate the electronic systems that inspired
us, but over time we should be able to construct a wider va-
riety of systems than those readily available in nature (e.g.
[12]). While edge mode protection in topologically nontrivial
bosonic systems may not be as intrinsic or robust (e.g. protec-
tion is not guaranteed by time-reversal symmetry; see Box 2
of [10]), these directions should nevertheless advance under-
standing and could offer novel applications of the materials in
question.

In this letter, we discuss topologically insulating (TI) cir-
cuits [13] – lattices of inductors and capacitors whose nor-
mal mode frequency matrix Ω2 mimics a topologically non-
trivial hopping matrix of an electronic system. Topological
photonics includes many proposals [6, 7]; here we study only
inductors and capacitors with the goal of providing the sim-
plest building blocks that can lead to topological nontriviality.
We discuss a minimal example whose Ω2 is (unitarily) equiv-
alent to the hopping matrix of a spinful 2D electron gas in
a magnetic field (see Sec. 5.2 in [14]), i.e., a spin-doubled
Azbel-Hofstadter model [15] (deemed the time-reversal in-
variant (TRI) Hofstadter model [16]). Our example simulates
1/3 magnetic flux per plaquette. Such a model is (topologi-
cally) similar to the spin-doubled Haldane model lattice [17]
(see Sec. 9.1.2 in [14]) that is featured in the more general
Kane-Mele Z2 topological insulator [1, 2]. We determine how
features of such models carry over to the circuit context, sum-
marized in a table at the end of the article. The first TI circuit,
which has already been realized [13], is a simple extension

of our example and we discuss that design in [18]. We fur-
ther generalize the recipe and provide a method to construct
Ω2 equivalent to the hopping matrix of a lattice of spins with
arbitrary complex spin-dependent hopping. Notably, we show
how to simulate any U(1) hopping with a smaller circuit than
that of [13], which simulated a specific U(1) hopping. This
provides a platform to synthesize background gauge fields us-
ing linear circuits in parallel to studies with more complex ele-
ments [19] and to intense investigations using ultracold atoms
(e.g. [20–23] and refs. therein).

Figure 1. (color online) (a) Circuit diagram of a TI circuit lattice,
whose normal mode frequency matrix Ω2 is equivalent to the hopping
matrix of the spin-doubled Hofstadter model in the Landau gauge
with respective ±1/3 magnetic flux per plaquette. All inductors (ca-
pacitors) have uniform inductance (capacitance), so colors are used
for visual aid only. The lattice consists of triangular sites m, n (la-
beled as φφφm,n, shaded grey), each consisting of three integrated volt-
ages φ(µ)

m,n (µ = 0, 1, 2) at its nodes. The vertical inductive connection
is dependent on the horizontal index m and generated by the cyclic
wiring permutation Vy in Eq. (1). (b) Band structure of Ω2 simu-
lating a semi-infinite sample, i.e., a wide vertical strip with the left
edge consisting of (Vy)0 permutations and right edge mode bands
removed. Bands for the spin up (down) component of the TRI Hofs-
tadter model are in red (blue). The spin Chern number Csc (see text)
is written inside each gap. The edge modes below the lowest bulk
band arise because of circuit edge effects [24] and are not topologi-
cally protected because they do not traverse a gap.

Minimal example.—We distill the idea from [13] in the
form of a simplified example (Fig. 1a) and detail how our
methods and conclusions apply to [13] elsewhere [18]. Our
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circuit consists of a lattice of sites (gray), each site consist-
ing of three nodes. Inductors link sites to each other while
capacitors couple the nodes within a site. We stress that no
external flux is threaded through any loop of the circuit and
the magnetic flux of the Hofstadter model is simulated via the
intersite inductive wiring. Transforming the real normal mode
frequency matrix Ω2 into the form of a Hofstadter hopping
matrix consists of grouping degrees of freedom into vectors
and performing a transformation to complex variables. In an
ungrounded circuit, each node m, n, µ (with µ = 0, 1, 2 label-
ing the degrees of freedom of the site) has a time-integrated
absolute voltage φ(µ)

m,n ≡
∫ t
−∞

v(µ)
m,n(t′)dt′ associated with it [25].

This labeling scheme introduces redundant degrees of free-
dom (which will soon be removed) while allowing Ω2 to be
determined analytically. We now group the nodes at each
site m, n into a vector φφφT

m,n = 〈φ(0)
m,n, φ

(1)
m,n, φ

(2)
m,n〉. For example,

the Lagrangian contribution of the link between site m, n and
m, n + 1 (see Fig. 1a) is then organized into a (kinetic) capac-
itive part 1

2
∑
δ=0,1 φ̇φφ

T
m,n+δC0φ̇φφm,n+δ and a (potential) inductive

part

1
2 (
∑
δ=0,1

φφφT
m,n+δI3φφφm,n+δ − φφφ

T
m,nVyφφφm,n+1 − φφφ

T
m,n+1VT

y φφφm,n)

with In n × n identity and respective onsite/intersite couplings

C0 =
1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 and Vy =

0 1 0
0 0 1
1 0 0

 . (1)

Above, the colors match those of the corresponding elements
from Fig. 1a and we have set a uniform capacitance of a third
(for normalization) and inductance of one. The equation of
motion (EOM) for φφφm,n in the lattice from Fig. 1a is

C0φ̈φφm,n = −4φφφm,n + Vxφφφm+1,n + VT
xφφφm−1,n (2)

+(Vy)mφφφm,n+1 + (VT
y )mφφφm,n−1 ,

where Vx = I3 and 4 is the number of nearest neighbors for a
site in the bulk. The three distinct powers of Vy [(Vy)3 = I3]
correspond to three vertical inductive wiring permutations and
mimic the Hofstadter model in the Landau gauge.

To diagonalize Ω2 in the index µ and simultaneously re-
move the aforementioned redundant degrees of freedom, one
can apply a discrete Fourier transform F to the three nodes of
each site: ζζζm,n = Fφφφm,n or ζ(µ)

m,n = 1
√

3
ei 2π

3 µνφ(ν)
m,n (µ = 0, 1, 2

and repeated indices summed). This site-preserving trans-
formation to a complex vector ζζζT

m,n = 〈ζ(0)
m,n, ζ

(1)
m,n, ζ

(2)
m,n〉 block-

diagonalizes Ω2 in µ at the expense of introducing complex
numbers. In the ζζζ basis, the simultaneously diagonal capac-
itive and inductive coupling matrices are C̃0 = diag(0, 1, 1),
Ṽy = diag(1, ei 2π

3 , e−i 2π
3 ), and Ṽx = Vx = I3. Since the trans-

formed circuit Lagrangian does not contain ζ̇(0)
m,n terms (since

(C̃0)00 = 0), the ζ(0)
m,n ≡

∑
µ φ

(µ)
m,n component for each site rep-

resents “half” of a degree of freedom (akin to a classical har-
monic oscillator in the limit of zero mass) and can be thought
of as an ordinary normal mode in the limit of zero capacitance.

The EOM for {ζ(1)
m,n, ζ

(1)?
m,n = ζ(2)

m,n}, treated as independent full
degrees of freedom ( j = 1, 2), is

ζ̈
( j)
m,n = −4ζ( j)

m,n+ζ
( j)
m+1,n+ζ

( j)
m−1,n+ei 2π

3 m jζ
( j)
m,n+1+e−i 2π

3 m jζ
( j)
m,n−1 . (3)

These variables are linear superpositions of bosonic modes
and their hopping properties resemble the TRI Hofstadter
model in the Landau gauge, i.e., they acquire a (simulated)
Peierls phase upon a vertical hopping. Thus, the block-
diagonal normal mode frequency matrix Ω̃2 =

⊕
µ Ω̃2

µ con-
sists of the trivial mode matrix Ω̃2

0 and the matrices Ω̃2
1,2 form-

ing the spin-doubled Hofstadter model.
Topological invariant.—In Fig. 1b, the band structure of

Ω̃2
1 (Ω̃2

2) is plotted in red (blue), depicting slightly distorted
[24] counterpropagating edge modes. Since the pseudo-spin
〈ζ(1), ζ(2)〉 is conserved, the spin-doubled Hofstadter model is
characterized by the Z spin Chern number Csc = 1

2 (C1−C2) [4]
at each gap. Given an edge, the Chern numbers C j are simply
the number of times the edge modes of Ω̃2

j wind around a hor-
izontal line drawn in the gap (Secs. 5.3.1 and 6.4 in [14]).
Moreover, the quantity C = Cscmod2 determines whether
there is an even or odd number of pairs of counterpropagat-
ing edge modes (this is the invariant of the more general Z2
TI [2], a QSHI with no spin conservation). The invariant C is
characterized by Kramers degeneracy, which prohibits elastic
backscattering between counterpropagating edge modes only
for odd numbers of edge mode pairs per edge [26]. Both our
example and [13] contain one gapless edge mode pair per edge
(Csc = 1) and, since pseudo-spin is conserved, constitute a
QSHI. Moreover, this system is not a crystalline topological
insulator [27] (as defined in [28]) since C , 0.

Due to the invariants established above, there must exist
some operator in the circuit context that mimics the antiuni-
tary electronic time-reversal operator iσ2K (with Ki = −iK
and σ1,2,3 the usual Pauli matrices), squares to −I2, and gen-
erates a Kramers degeneracy (a similar observation has been
made [9] with photonic TIs [8]). Such an operator does indeed
exist and comes about from a symmetry of the circuit. In the φφφ
basis, the coupling matrix Vy, a cyclic permutation of all nodes
in each site, commutes with Ω2 and generates the symmetry
group C3 ≈ {I3,Vy,VT

y }. A generic linear commuting operator
(with identity components in the dimensions indexed by m, n)
can be expressed as cµ(Vy)µ for some cµ=0,1,2 ∈ C. Since Vy

is real, all antilinear extensions of the above operators can be
expressed as cµ(Vy)µK. In the ζζζ basis,

K → K̃ = F†KF = F†F?K = (1 ⊕ σ1)K ,

which squares to I3. However, the operator S [such that S̃ =

(1 ⊕ σ2)K and S̃ 2 = 1 ⊕ (−I2)] is also in the span of (Vy)µK.
Thus, electronic time-reversal symmetry in the tight-binding
context maps to a combination of ordinary time-reversal and
cyclic permutations in the circuit context. We also note that
Σ̃ = S̃ K̃ = 1⊕ (−iσ3) characterizes the conserved pseudo-spin
for the time-reversed Hofstadter copies.

Symmetry protection.—Mirroring topological protection in
QSHIs and Z2 TIs, counterpropagating edge modes of a TI
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circuit must also be “protected” to some degree. Emulat-
ing one-particle elastic scattering processes in TRI electronic
systems [26], a crossing between edge modes on the same
edge at time-reversal invariant points k = 0, π in the Brillouin
zone will not be lifted by inductance or capacitance pertur-
bations that commute with S (which is now in the φφφ basis).
Let a generic inductive link between sites m, n and p, q be
parametrized by

φφφT
m,nM11φφφm,n +φφφT

p,qM22φφφp,q +φφφT
m,nM12φφφp,q +φφφT

p,qMT
12φφφm,n , (4)

where real 3 × 3 matrices M j j ( j = 1, 2) are onsite couplings
at the two respective sites and M12 is the intersite coupling.
Such a perturbation will not cause elastic backscattering be-
tween edge modes whenever [M j j′ , S ] = 0. For our design,
such perturbations are all those which do not break the cir-
cuit’s C3 symmetry, i.e., commute with Vy. For example, an
identical simultaneous perturbation of all three inductances in
any given link [M j j ∝ I3, M12 ∝ (Vy)µ] or an onsite per-
turbation (M j j′ ∝ δ j1δ j′1[(Vy)µ + (VT

y )µ]) will not mix edge
modes. However, fluctuations of inductance will cause elastic
backscattering between edge modes whenever the fluctuations
are not identical within any given link. A similar statement
holds for capacitive perturbations.

Topologically insulating circuits (i.e., both our design and
[13]) turn out to be similar to optical resonator designs [7]
in that both are robust against disorder that does not induce
flips of pseudo-spin [10]. In our design, the pseudo-spin
is characterized by Σ = S K: since M j j′ are real matrices,
[M j j′ , S ] = 0 ↔ [M j j′ ,Σ] = 0. We also note that, in a re-
alistic setup, both optical resonator edge states and TI circuit
edge modes will decay due to optical and microwave dissipa-
tion, respectively.

Generalizations.—Given that the above design only has
d = 3 nodes per site, one can consider increasing the num-
ber of nodes per site (triangles → d-gons) and generalizing
the cyclic permutation (Vy →

∑d−1
µ=0 |µ〉〈µ + 1| mod d). This

results in a family of models that can emulate TRI Hofstadter
hopping matrices with p/d background magnetic flux using d
nodes per site and vertical connections (Vy)p (with integer p).
We note in passing that the d = 2 case is trivial because it is
not gapped in the bulk (see Eq. (5.53) in [14]) and that [13] is
closely related to d = 4 [18]. However, we have developed
other generalizations which allow simulation of any back-
ground gauge field using circuits that are much more compact.
We discuss these approaches below.

First, an arbitrary complex hopping can be achieved using
only three nodes per site. For simplicity, we first focus on one
link. Instead of having one wiring permutation (e.g. Vy in Fig.
1), one can implement all three permutations (Vy)µ in a linear
superposition (Fig. 2a). In this case, each permutation gains
its own degree of freedom. The intersite inductive coupling
matrix is then Vy → VA = `

(µ)
inv(Vy)µ, where `(µ)

inv is the inverse
inductance of permutation µ. In the ζζζ basis, the coupling is
diagonal with (ṼA)µν = `(τ)

invei 2π
3 τνδµν (no sum over ν). Parame-

terizing the µ = 1 component in terms of an amplitude/phase

Figure 2. (color online) (a) Superposition of three different wiring
permutations (Vy)µ and their respective inverse inductances `(µ)

inv, µ =

0, 1, 2 (solid, dashed, dotted respectively), achieving any U(1) hop-
ping in the ζζζ basis. (b) Additional wiring permutations P(Vy)µ which
create U(2) hopping terms in the ζζζ basis. (c) A circuit to simulate
the Aharonov-Bohm (AB) effect. A vector signal φφφin enters from
the left, propagates through N sites via two different paths A and B,
and produces two outputs, φφφA,B. One can measure an interference
between these outputs [Eq. (7)] and observe oscillations for even N
since permutations Vy and P do not commute.

obtains (ṼA)11 = tAeiθA with

tA =

√
[`(0)

inv −
1
2 (`(1)

inv + `(2)
inv)]2 + 3

4 (`(1)
inv − `

(2)
inv)2 ,

θA = tan−1


√

3(`(1)
inv − `

(2)
inv)

2`(0)
inv − (`(1)

inv + `(2)
inv)

 . (5)

Naturally, (ṼA)00 =
∑
µ `

(µ)
inv ≡ λA and (ṼA)22 = tAe−iθA . Addi-

tionally, there is a diagonal inductance contribution of 1
2λAζζζ

†ζζζ
to both of the linked sites. Thus, the hopping and diagonal
terms {tA, θA, λA} can be tuned using {`(µ)

inv}
2
µ=0 with the con-

straint λA ≥ tA since `(µ)
inv ≥ 0. The symmetry protection still

holds here since (Vy)µ ∈ C3.
Second, non-Abelian couplings can straightforwardly be

implemented while still keeping d = 3. Instead of using
the permutations (Vy)µ, three other permutations P(Vy)µ (with
P = 1 ⊕ σ1 and [P,Vy] , 0; see Fig. 2b) can be su-
perimposed to give an inverse inductance coupling matrix
Vy → VNA = `

(µ)
invP(Vy)µ. Nonzero entries of ṼNA are an off-

diagonal hopping (ṼNA)12 = (ṼNA)?21 ≡ tNAeiθNA and a diagonal
contribution (ṼNA)00 =

∑
µ `

(µ)
inv ≡ λNA. Similar to VA, the hop-

ping and diagonal terms {tNA, θNA, λNA} of VNA can be tuned
using {`(µ)

inv}
2
µ=0. As an example, one can already realize a non-

Abelian generalization of the Hofstadter model [21] by letting
Vx → P in Eq. (2).

The above design allows one to create a lattice with spa-
tially nonuniforn noncommuting unitary hoppings between
sites [e.g. tm,n exp(iθm,n) using either (Vy)µ or P(Vy)µ] while
maintaining identical onsite contributions (λm,n ≡ λ). Despite
this flexibility, one cannot create arbitrary U(2) hoppings us-
ing three nodes per site (assuming onsite contributions are to
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remain identical). This is because linear superpositions of the
six permutations [(Ṽy)µ and P(Ṽy)µ] with nonnegative real co-
efficients (since our variables are inverse inductances) do not
span all unitary 2× 2 matrices acting on 〈ζ(1), ζ(2)〉. More per-
mutations are needed, so one needs more nodes per site to
generate them. Finding this minimal number of nodes maps
to an open problem from group theory [29, 30], and we have
numerically determined [18] that one needs 8 (9, 16, 25, 13)
nodes per site in order to simulate unitary hoppings of dimen-
sion 2 (3, 4, 5, 6).

Non-Abelian Aharonov-Bohm effect.—We finish with a dis-
cussion of applications. First we propose an experiment that
uses the φφφ-ζζζ duality to observe an electrical non-Abelian
Aharonov-Bohm (AB) effect [21, 22, 31]. Since all circuit
elements are reciprocal here, it is the non-reciprocity of their
permutations that leads to interference effects. One can think
of φφφ as the wavefunctions and sites n = 1, 2, ...,N as spatial
positions (Fig. 2c). An incoming signal φφφT

in = 〈φ(0)
in , φ

(1)
in , φ

(2)
in 〉

is applied onto paths A and B. Let

φ
(µ)
in =

√
2
3 cos(ωt − 2π

3 µ) , (6)

which is equivalent to ζζζT
in = 1

√
2
〈0, eiωt, e−iωt〉. Path A contains

N − 1 cyclic permutations Vy from Eq. (1) while path B con-
sists of N − 1 permutations P from Fig. 2b (with [Vy, P] , 0).
Remembering Eq. (3), we see that a phase of ei 2π

3 (e−i 2π
3 ) is

gained by ζ(1) (ζ(2)) as the signal “hops” sites in path A. For
path B, the ζ(1) and ζ(2) components are exchanged upon each
application of P. One can superimpose the outputs φφφA and φφφB

to observe their interference. For odd N, this interference is
constant in time. For even N, one should see oscillations due
to a nontrivial path B:

|φφφA + φφφB|
2 ∝ cos2{ωt − 2π

3 [(N − 1) mod3]} . (7)

Since voltage is the derivative of φ, one can perform the above
experiment by applying voltage signals of the form ofφφφin from
Eq. (6), measuring the six output signals at site N for paths
A and B, and superimposing them in the manner of Eq. (7).
Since the AB effect is nonreciprocal, driving from right to left
(φφφin ↔ φφφA,B) should flip the sign of the phase gained along A.

Outlook.—This work generalizes the first proposal of a
topologically insulating (TI) circuit [13]. We present a simpli-
fied circuit whose normal mode frequency matrix is unitarily
equivalent to the hopping matrix of the time-reversal invariant
Hofstadter model [16] with 1/3 magnetic flux per plaquette. A
summary of the equivalence is below:

TRI Hofstadter model TI circuit
Hopping matrix Normal mode frequency matrix Ω2

Fermionic mode cm,n ζ(1)
m,n = ei 2π

3 νφ(ν)
m,n at site m, n

Peierls phase Intersite wiring permutations
Kramers degeneracy S̃ = (1 ⊕ σ2)K due to C3 symmetry

In the above table, φ(µ)
m,n is the integrated voltage at node m, n, µ

as depicted in Fig. 1a, σ2 is the second Pauli matrix, and
Ki = −iK. Since Hofstadter models posses edge modes, we

determine which perturbations do not cause edge modes to
backscatter.

Additionally, we generalize the approach and determine
the minimal circuit complexity required to simulate non-
Abelian background gauge fields. Besides a simulation of the
Aharonov-Bohm effect, we now speculate on further applica-
tions of this circuit QED simulation tool [32]. A major flexi-
bility is being able to construct and locally probe virtually any
lattices (e.g. honeycomb [23] or Kagome [33]) and lattices
with connections other than nearest neighbor at the same cost
in complexity. Almost any physically relevant and exotic ge-
ometry can be implemented [34] (e.g. a Möbius strip [13]).
One can construct interfaces of lattices and observe mixing of
edge modes at the boundary, akin to graphene p-n junctions
[35]. To simulate interactions, one can substitute Josephson
junctions [36] (mechanical oscillators [37]) for inductors (ca-
pacitors). These and other topics are currently under investi-
gation.
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