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Future metrology standards will be partly based on physical quantities computed from first princi-
ples rather than measured. In particular, a new pressure standard can be established if the dynamic
polarizability of helium can be determined from theory with an uncertainty smaller than 0.2 ppm.
We present calculations of the frequency-dependent part of this quantity including relativistic effects
with full account of leading nuclear recoil terms and using highly optimized explicitly correlated ba-
sis sets. A particular emphasis is put on uncertainty estimates. At the He-Ne laser wavelength of
632.9908 nm, the computed polarizability value of 1.391 811 41 a.u. has uncertainty of 0.1 ppm that
is two orders of magnitude smaller than those of the most accurate polarizability measurements.
We also obtained an accurate expansion of the helium refractive index in powers of density.

Some physical quantities, for example, properties of
the helium atom and interaction energies of helium
atoms, can now be computed from first principles with
precision rivaling and sometimes exceeding the best ex-
perimental determinations [1-3]. Therefore, quantities
of this type can be used in establishing metrology stan-
dards. One example is a possible standard of temper-
ature based on acoustic gas thermometry [4]. Another
example is a pressure standard based on optical interfer-
ometry [5]. The current pressure standard dating back
more than 300 years is realized by mercury manometers
and can not be further improved. Also, the reference
manometers are far from portable: 3 m high and con-
taining 250 kg of mercury, a substance banned due to
its toxicity. Since pressure is one of the most widely
measured properties, in applications ranging from man-
ufacturing of semiconductor chips to air-traffic control,
a new pressure standard would significantly impact both
technology and everyday life. The proposed standard [5]
obtains pressure from the formula [6]
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p= T (1)
where n denotes the index of refraction of helium gas, k
the Boltzmann constant, 7" the temperature, a the dipole
polarizability, and x the diamagnetic susceptibility of he-
lium. To account for nonideality of helium gas, one has to
include some small terms on the right-hand side depend-
ing on dielectric and density virial coefficients [6]. The
essential part of the new standard is the determination
of n with an uncertainty of 0.2 ppm via interferometric
measurements of a variable-length cavity filled with he-
lium and comparing to measurements in vacuum. The
product kT, currently known with an uncertainty of 0.9
ppm [7] near the temperature of the triple point of water,
is the subject of active research and a reduction of this
uncertainty can be expected in near future. Since  is five
orders of magnitude smaller than «, it can be computed

using the non-relativistic wave function from the expres-
sion y = —e%(r?)/3mec?, where e and m, are the electron
charge and mass, c is the speed of light, and (r?) is the
average square of the electron-nucleus distance. Also the
virial coefficients are known accurately enough from the-
ory [3, 8]. However, a cannot currently be measured with
uncertainty lower than 0.2 ppm, so the standard clings
upon theory being able to achieve such accuracy. This
Letter describes calculations of « from first principles.
The resulting value of n can also be used to calibrate re-
fractometers or to correct errors in interferometric length
measurements [9].

Since the radiation frequency of interest, 632.9908 nm
[10], is much smaller than the lowest resonance, the fre-
quency dependence of « can be efficiently calculated from
the power series expansion, a(w) = ag + a w? + agw? +

-, where «g is the static dipole polarizability. The
coefficients ag, k > 0, describing the frequency depen-
dence of polarizability, will be referred to as the (polar-
izability) dispersion coefficients. We shall use the atomic
units throughout (we never use reduced atomic units),
a3, where ag is the bohr radius h?/m.e?, as the unit of
polarizability and the inverse of the atomic unit of time,
to = h3/mee?, as the unit of frequency. For light sys-
tems like helium, each oy can be expanded in powers of
the fine structure constant 1/¢, where ¢=137.0359991 [7]
is the speed of light expressed in atomic units, o =
al(cO) + al(f) + a,(f) T, ag)
We shall refer to a,(f) as the relativistic contributions.
The terms af), agl), etc., are due to radiative as well
as higher-order relativistic effects predicted by quantum
electrodynamics (QED).

The nuclear mass dependence of the nonrelativistic po-
larizability a%o), can be taken into account exactly, but
for the relativistic and QED contributions one has to
use an expansion in powers of the ratio of m, to the
nuclear mass m,, i.e., in powers of 1/M = me/m, =

being proportional to 1/cl.



1/7294.2995361. This subject has not been discussed in
literature and we had to derive expression defining these
effects. Since 1/M is of the order of 1074, keeping the
linear term is entirely sufficient and such contributions

can be represented in the form a,(cl) = a,(c ) + a,(cll), > 2,

where a,(clo)

and a,(cll) are corrections of the order of 1/(Mc'), referred

to as the recoil corrections. These recoil corrections are

expected to be negligible except for the static ones oz((fl)

and oz(()?’l) and, possibly, for aéﬂ)
For comparisons with experiments, it is convenient to

convert frequency to wave length \ = 2mce? /hw

are computed with the infinite nuclear mass

a(N) = Ag+ A AN 2F AN (2)

When a()) remains in atomic units and A is measured
in nm, then A, = f*ou, where f = 2rcap/nm =
45.56335253 (with ap=0.05291772109 nm).

The static components of « obtained in the present
work are consistent with the values of Ref. 1 to all digits
shown in this reference, except for the term describing the
electric-field dependence of the Bethe logarithm and for

840) We recomputed the former term using a different
method than used in Ref. 1 obtaining a result that dif-
fers only marginally, by 0.011 pa3 = 10~ %a3, the current
value being more accurate. The term a((;w) was estimated
in Ref. 1 by the contribution from the simple one-loop
expression [11] and the uncertainty of this term was as-
sumed to be 40%. Later, it was shown in Ref. 12 that
the error of the one-loop approximation applied to the
excitation energies of helium is only about 5%. There-
fore, we reduced our error estimate from 40% to 25% or
0.14 pad, which we believe is still very conservative.

The dispersion coefficients «y, (k = 2, 4, 6) were cal-
culated thus far only by Bhatia and Drachman (BD)
[13, 14]. These authors did not provide any estimates
of the uncertainties. Their relativistic contributions do
depend on the nuclear mass but the recoil effect, a,(fl),
was not correctly taken into account, vide infra. Further-
more, the Ay coefficients were incorrectly converted from
the reduced Rydberg units: the factor (1 + me/mq)*,
appearing in the conversion formula, was erroneously re-
placed by its square (1 + m./mg)?*

At the nonrelativistic level of theory, a(w) of an atom
in a quantum state v is defined by the standard polar-
ization propagator expression

a(w) = (PlzR(w)z[) + w)zly),  (3)

where z = z1 + 29, with z; denoting electron coordinates,
and R(w) = Q (QH — E + w)~! is the resolvent of the
atomic Hamiltonian H, with @ =1—P = 1—|[¢)(¢)| and
E being the energy of state . For the helium atom

(YlzR(-
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H= ——vi——vg—W(v1+v2)2————+—. (4)
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R(w) satisfies the identity R(w) = R — w R R(w), where
R = Q(QH — E)~! is the static (reduced) resolvent of
H. Tterating this expression and inserting it into Eq. (3),
one obtains

o) =2 (y| RE12|y). (5)

To account for the leading relativistic contributions of
the order of 1/c? assuming infinite nuclear mass, we add
to the Hamiltonian of Eq. (4) the perturbation from the
Breit-Pauli Hamiltonian [15] obtaining

01820) — 4 <1/}0|B1ROZROZ1/}O> —2 <1/)0|ZR0§1R02¢0>7
af?? = —4 (1ho| By Ro 2R3 240)
—2 <1/)0|ZR%B1R321/}0>7

— 4 (tho|2RoB1R3230)

a2 = —4 (1ho| ByRozRE210) — 4 (0| 2RoB1RE210)
—4 (1holzREB1Rgztho) — 2 (vo| 2Ry B1Rjzto),

al?® = —4 (1ho| ByRozRI21h0) — 4 (0| 2RoB1RY 21)0)
—4 (Yo|2REB1RG210) — 4 (1ho| 2Ry B1 Ry 210)
—2 (0|2 RAB1 Ry 20),

where

1 m m
Bi = =5 (Vi+ Va) + 5 [6(r) +0(rs)] + Z0(r12)

1 _ _
+@[V17‘121V2 + (Vir12)r15 (r12V2)], (6)

B1 = B1— (10| B110), and the quantities with subscript 0
are analogous to those defined above but for infinite-mass
nonrelativistic Hamiltonian.

The relativistic recoil term aém) is equal 01821)(B2) +

aéﬂ)(HlBl), where Hy = —5+-(V; 4 V3)2 and

By = M — VlT‘l Vi+ (Vlrl) (Tlvl) + V17‘1_1V2
(Vlrl)rf (7"1V2) + VQ’I”Elvl + (VQTQ)T;B(T2V1)

+ V2T2_1V2 + (VQTQ)T;S(T2V2>:| . (7)
The two components are given by

aéﬂ)(Bz) _ 2 (10| 2RoBaRozbo)

(®)

—4 (19| BaRozRoz0) —
where B is defined in the same way as B; and

By) =
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where Hy = Hy — (¢o|H1vo).
The correction 04%21) is very small and can be computed
using a finite difference expression

oSV ~ ol (B1 = Ba) + oSV (Ho — H) — o, (10)

valid to the order of 1/(M?2c?), where B; — Bz means

that operator B; in the expression for a§20) should be
replaced by Bs and similarly Hy — H means that quan-
tities computed with the Hamiltonian Hy should be re-
placed by those computed with H.

To evaluate agz), accurate representations of the he-
lium ground-state wave functions 1y and 1 were ob-
tained by minimizing the Rayleigh-Ritz functional for the
Hamiltonians Hy and H, respectively. We also need four
auxiliary functions, which were obtained recursively from
Hylleraas-type functionals

J§" 18] = (9lHo — Eo + Polé) —2(dlef" ) (11)

for ¢((J") = R{ 2o and
K] = (9] Ho— Bo+ Polth) —2(5|(1— Po)z6(") , (12)
for 1/)(()”) = Rozqﬁén), and analogous functionals obtained
by dropping all the subscripts 0 for ¢(™ = R"z¢ and

(™ = Rz¢(™ . The trial functions used in all minimiza-
tion processes were expanded in bases of Slater geminals

N
¢ = (14 P12)Y(r1,ra) Y e @ —Fir2=mme (13
i=1
where P12 is the transposition operator whereas
Y(ri,r2) = 2z in calculations of ¢((J") and ¢ and

Y (r1,r2) = 1 otherwise. One may note that the func-
tions 1/16") and ¥ contain also a D-wave component,
but it does not contribute to matrix elements that are
needed. The linear coeflicients were obtained by solving
the appropriate set of linear equations, while to deter-
mine the nonlinear parameters we employed two strate-
gies: the full optimization (FO) and the stochastic op-
timization (SO). In the latter case, the parameters «;,
Bi, vi are pseudo-randomly generated from a box with
optimized dimensions. We used two boxes to model the
short-range and medium-range asymptotics of the wave
functions. To eliminate possibilities of numerical errors,
the FO and SO based codes (including the integral and
linear algebra routines) were programmed entirely inde-
pendently by different members of our team.

The contributions a,(co) for k = 0, 2,4, 6 were com-
puted for several values of N, up to 600 (800) in the
FO (SO) approach, both optimizations giving at least 11
convergent digits, with FO converging faster. Our results
agree to 9, 8, 4, and 7 digits, respectively, with the val-
ues obtained by BD [13]. Using the SO procedure, we

also calculated: o’ =4.39500532(1), o\%=6.7725956(1),
!9 =10.622083(1), and !} =16.86118(1) a.u.

For the relativistic contributions oz,(fo), k=20,2 4,6,
the convergence is much slower than in the nonrelativis-
tic case. This is due to the fact that we use nonrela-
tivistic functionals which are sensitive to wave function
values in different regions of the configuration space than
the relativistic operators (these operators are too singu-
lar to be used in optimizations). The SO procedure leads
now to a faster convergence than FO since randomly cho-
sen exponents cover the space more uniformly than FO
exponents. Thus, we used the SO results as our recom-
mended values and in estimates of uncertainty. Neverthe-
less, the agreement to 6, 5, 3, and 3 digits, respectively,
between the two sets of results is more than sufficient
for the present purposes. Our values are substantially
more accurate than those of BD [14], with agreement to
only 2, 2, and 1 digit, respectively (BD did not compute
aé%)). For aém), our value is consistent with, but signifi-
cantly more accurate than the results of Refs. [1, 16, 17].

The relativistic recoil contribution 04(()21) is —0.0935(1)
pad. Its smallness results from some cancellation of its
components, aéﬂ)(Hl Bj) and aéﬂ)(Bg), equal to 0.1559
and —0.2494 pia3, respectively. The contribution ™" is
equal to —0.144(1) pad t3, so it is virtually negligible.

It should be pointed out that the relativistic contri-
butions computed by BD [14] depend on the nuclear
mass and, strictly speaking, should not be compared
with our, nuclear-mass-independent contributions oz,(fo).
This is because these authors incorrectly assumed that
the individual terms in the Breit-Pauli Hamiltonian are
proportional to (inverse) powers of the reduced electron
mass rather than the real mass. Therefore, although the
nuclear-mass-dependent part of their relativistic contri-
butions is of the order of 1/(Mc?), it differs from the

afl) (B1H;) part of the true recoil correction. Addition-

ally, BD completely neglected the contribution oz,(fl) (B2).
Thus, their relativistic contributions cannot be viewed as
approximations to a,(fo) + a,(fl). Since the effects of the
order of 1/(Mc?) are very small, the differences between
our relativistic contributions and those of BD are mainly
due to the differences in basis sets used in the calcula-
tions rather than to the treatments of the nuclear mass
dependence.

After correcting the units conversion error in Ref. 14,
the Ay coefficients computed by BD agree with our values
to b, 6, 4, and 5 digits for k = 0, 2, 4, 6, respectively. For
k = 0, the discrepancy is mainly due to the 1/¢3 terms
not considered by BD. The reasons for the low accuracy
of A4 are unclear. Due to the smallness of the relativistic
contributions to Ay, the overall agreement is good despite
the fact that the relativistic contributions from BD work
are significantly less accurate than ours.

In Table I, we present the dynamic polarizability of



TABLE I. Dynamic polarizability of *He [a3] at A = 632.9908
nm.

static nonrelativistic 1.383 809 98641(1)
1/¢% @ —0.000 080 4534(1)
1/ ? 0.000 030 655(1)
1/ct 0.000 000 56(14)
finite nuclear size®  0.0000000217(1)
total 1.383 760 77(14)
A2 nonrelativistic 0.007 995 7979(1)
relativistic® —0.000 000 1721(1)
total 0.007 995 6258(1)
A1 nonrelativistic 0.000 054 8363(1)
relativistic 0.000 000 00014(1)
total 0.000 054 8364(1)
A© nonrelativistic 0.000 000 4076(1)
relativistic 0.000 000 0000(1)
total 0.000 000 4076(1)
A8 nonrelativistic 0.000 000 0032(1)
a(\) — «(0) present® 0.008 050 8730(1)
BD/ 0.008 050 871
total present 1.391 811 64(14)
BDY 1.391 780 800

“Includes the recoil correction of the order of 1/(Mc?) equal
to —0.000000 0935(1). °From Ref. 1 except for the
contribution from the electric field derivative of the Bethe
logarithm equal to 0.000 000 182(1) [18]. © Computed
adding the correction term (4/3)7 72 [6(r1) + 6(r2)] to H,
where ro, = 1.676 fm is the nuclear charge radius of ‘He.
“Including the recoil correction of the order of 1/(Mc?)
equal to —0.000 000 00075(1). “The contribution of the A~'°
term, amounting to 2.5x107 1%, is negligible. Calculated
using correctly converted Ay constants. Equation (15) of
Ref. 14 gives 0.008 052 951, i.e., 0.03% error resulting in 1.7
ppm error in the total value of «(632.9908). “Using the
static value of BD equal to 1.383 729 929.

4He. In addition to the contributions discussed earlier,
we included the effect of finite nuclear size which is almost
negligible. The dispersion part of «(632.9908), i.e., the
contribution explicitly dependent on wavelength, agrees
to 6 significant digits with the result of BD (after con-
version errors are corrected) due to the high, eight-digit
accuracy of BD’s aéo) contribution. However, the to-
tal polarizability obtained by us differs significantly from
BD’s result: only 5 digits agree and the discrepancy is
about 22 ppm. As already discussed, this difference is
mainly due to the QED effects neglected by these au-
thors. The second source of the difference is our sig-
nificantly improved value of the static relativistic com-
ponent. The uncertainty of our recommended value of
«(632.9908) amounts 0.14 pa3, i.e., about 0.1 ppm. This
accuracy is sufficient for the purpose of the new pressure
standard but one should ask if any neglected effects could
contribute above the uncertainty estimate. The potential
candidates are the QED recoil correction oz(()3l) of the or-

der of 1/(M¢c?), the QED contribution to the polarizabil-
ity dispersion aégo) of the order of 1/¢3 and, finally, and

probably most importantly, the remaining, other than

one-loop contributions to a((;w) of the order of 1/c¢*. We
conservatively estimated the possible magnitudes of the
neglected contributions and found that their sum should
be below 0.1 ppm. This uncertainty is already included
in the final error bar given in Table I.

TABLE II. Virial expansion of refractive index. a, = %an,
bn, and ¢, are in units of cm®/mol, cm®/mol?, and cm®/mol?,

respectively, and A is in nm. 1 cmg/mol = 11.2058721 a3.

a-(0) present 0.517 246 21(6)*°
exp. [6] 0.5172455(47)

ar(632.9908)  present 0.520 255 64(6)¢
exp. [19, 20] 0.521 3(1)
exp. [21] 0.5220(3)

ar(546.2268)  present 0.521 297 25(6)
exp. [22] 0.521 57(15)°

b (0) present, 273.16 K 0.0245(2)7

b, (632.9908)  present, 273.16 K 0.0238(2)"
present, 302 K 0.0184(2)*
present, 323 K 0.0151(2)7
exp. [20] 0.000(15)¢

cn(0) present, 273.16 K -0.93(25)"

* a, = 8.6942922(9) aj or 0.775869 31(8)(4) cm® /mol,
where the second uncertainty originates from the Avogadro
constant 6.022 141 29(27)x10%3. ® Computed using x =
—0.000 021 194(1) a3 [23], the uncertainty reflects the
estimated size of relativistic contributions. € a, =

8.744 8758(9) aj = 0.780 383 35(8)(4) cm®/mol. ¢ We
neglected the frequency dependence of ¥, a relativistic effect
expected to be very small. “Inferred from measured value of
n—1 = 34.895(10)x10™* at T=273.16 K and p=101.325
kPa. / Computed using b-=—0.0978(2) cm®/mol [24]
(uncertainty estimated based on comparison with Ref. 8)
and c. =—1.34(36) cm®/mol? [6, 25], T=273.16 K. For other
T: b(303) = —0.1065(2) cm® /mol and b.(323) =

—0.1107(2) cm®/mol [24]. ¢ Computed from a, = 0.5213(1)
cm®/mol and b, = 2b, — +a, = —0.068(10) cm®/mol”
measured in Ref. 20, same value obtained for both
temperatures.

The virial expansion for the refractive index can be
written as

n=14anp+bup*+cop® +---, (14)
a, =2n(a+ x), (15)
by = 2m(abe + Fma® + xb, + 27x? + 2may), (16)

(17)

cn = 2m(ace + %waQ be + §w2a3),

where p is density, b and c. are the dielectric virial co-
efficients and b, is the magnetic permeability virial coef-
ficient. We have written down the term xb, in Eq. (16),
but we will neglect it in numerical calculations since x
is about five orders of magnitude smaller than o and b,
(unknown) is expected to be at the most of the same or-
der as b.. We completely ignored the magnetic part of ¢,
in Eq. (17). After Eq. (14) is squared, it becomes con-
sistent with Eq. (4) of Ref. 6 within the terms included
there except that the factor of 2 is missing in front of the



A2b p? term. Equation (14) can be easily solved for p and
the resulting formula can be used for a determination of
density, or, when combined with the virial equation of
state, also for a determination of pressure.

The virial coefficients are presented in Table II. The
agreement with the measurement of Schmidt et al. [6] is
excellent, to within 1.449.1 ppm. Note that the authors
of Ref. 6 reported the value of a, with a subtracted mag-
netic contribution 47y /3 = —0.0000080 cm?/mol, which
was added back in Table II. The agreement of theory
with measurements at 632.9908 nm [19-21] is, however,
poor, as noticed earlier by BD [14] and by Stone and
Stejskal [9]. The disagreement with the measurement of
Leonard [22] is smaller, only about twice the experimen-
tal uncertainty. The apparent better agreement of theory
with this experiment (within 1) found in Ref. 14 was due
to the neglect [14] of the nonlinear dependence of density
on pressure. The values of b,, and c¢,, presented in Table 11
have uncertainties due entirely to uncertainties of b, and
¢e. The third and fourth term in Eq. (16) make negli-
gible contributions and there is substantial cancellation
between the first two terms. The experimental b,, deter-
mined from the values measured in Ref. [20] is consistent
with zero, which is almost within the combined theoret-
ical and experimental uncertainties. From our data and
from the b.(T") data of Ref. 24 we predict that b, will
vanish only around 415 K. Since b,, is small at T=273.16
K and higher temperatures, its accuracy is sufficient to
predict n—1 with a 1 ppm uncertainty for pressures up
to 10 MPa.
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