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Models such as Natural Inflation that use Pseudo-Nambu-Goldstone bosons (PNGB’s) as the
inflaton are attractive for many reasons. However, they typically require trans-Planckian field
excursions AP > Mpi, due to the need for an axion decay constant f > Mp; to have both a sufficient
number of e-folds and values of ns, r consistent with data. Such excursions would in general require
the addition of all other higher dimension operators consistent with symmetries, thus disrupting
the required flatness of the potential and rendering the theory non-predictive. We show that in the
case of Natural Inflation, the existence of spinodal instabilities (modes with tachyonic masses) can
modify the inflaton equations of motion to the point that versions of the model with f < Mp; can
still inflate for the required number of e-folds. The instabilities naturally give rise to two separate
phases of inflation with different values of the Hubble parameter H, one driven by the zero mode,
the other by the unstable fluctuation modes. The values of ns and r typically depend on the initial
conditions for the zero mode, and, at least for those examined here, the values of r tend to be

unobservably small.

PACS numbers: 98.80.Es, 98.80.Cq

While the inflationary paradigm is consistent with all
data coming from the CMBJ1, 2] as well as large scale
structure[3], the building of concrete models of inflation
which are consistent with the known precepts of quantum
field theory, and have some measure of naturalness has
been a vexing problem since inflation was first posited.
The main issue is how to keep quantum corrections from
disturbing the required flatness of the potential V' (¢) for
the inflaton ®, as measured by the slow-roll parameters
€ = M3/2 (VI(@©)/V(D)?, n = M3 (V"(®)/V(®)).
One exception to this situation occurs when @ is the
pseudo-Nambu-Goldstone boson (PNGB) of a broken
symmetry. In this case, there can be a residual shift
symmetry that protects the flatness of the potential from
obtaining quantum corrections. It is exactly this prop-
erty of PNGB’s that was exploited in Natural Inflation
(NI)[4-6]. A PNGB @ was taken to be the inflaton with
a potential of the form

V(®) = A* (1 + cos ?) , (1)

where A and f are mass scales that can be fixed by match-
ing to observations.

If we now ask that we have at least 65 e-folds of in-
flation and that for modes leaving the horizon during
the last 55-60 e-folds we arrive at values of the spec-
tral index ng and the ratio of scalar to tensor ampli-
tudes r consistent with Planck[1] and BAO[7] data then
f > Mp; is required. This is problematic on a num-
ber of levels. First and foremost, given that the field ®
moves a distance greater than f in field space during in-
flation, we need to cope with field values greater than the
Planck scale. Generically, this would imply that Planck
suppressed higher dimension operators could not be ne-

glected or, to put it another way, the effective field theory
treatment of ® would break down. A second issue is that
while axions exist in abundance in string theory, super-
Planckian axion decay constants are difficult to obtain[8]
within this framework. In all, it is safe to say that from
both a theoretical and observational point of view, the
requirement that f > Mp) gives rise to concerns about
just how “natural” Natural Inflation can be.

Ideas such as N-flation[9], aligned inflation[10], which
use the plethora of axions found in string theory to either
reduce the effective value of f by the number IV of axions
or balance the different decay constants of two axions to
obtain a super-Planckian effective decay constant have
been suggested as potential ways out of this dilemma (see
also Refs.[11-17] and, in the context of multi-field infla-
tion, Refs.[18, 19]). Other types of string constructions
give rise to the axion monodromy[20] scenarios in which
the field manifold is such that a sub-Planckian field ex-
cursion can give rise to an effective super-Planckian one.

In all of these constructions, the hope is that by dint of
either the field content or the vagaries of the field man-
ifold, the need for a fundamental super-Planckian axion
decay constant can be obviated. In this work we offer
a different approach, one that uses the non-equilibrium
dynamics of PNGB’s to show that consistent inflation
can be achieved in NI even with f < Mp;. The main
observation leading us to this result is that the potential
in eq.(1) has regions where the frequency wy, for modes
of comoving wavenumber k is imaginary; these give rise
to spinodal instabilities[21]. The equation of motion for
these modes is given by
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where a(t) is the scale factor of the FRW geometry as
usual, H(t) the corresponding Hubble parameter and we
have decomposed the field ® as

B(7,t) = (1) + V(& 1), B(F, 1) = % S gelt)e
k
3)

Thus ¢(t) is the zero momentum mode and we have used
a box of comoving volume V' for our momentum expan-
sion. We see from eq.(2) that for 0 < ¢/f < 7/2 and
for low enough values of k/a(t), the mode gx(t) is un-
stable. An inflationary period ensures that more and
more modes will be redshifted into the instability region,
though the dominant effect on the background evolution
comes from the most unstable modes, i.e., the ones that
were near the unstable regime early on during inflation.

The main way in which the spinodal instability makes
itself felt is through the growth of the two-point function
of the fluctuations (¢(&,t)2):
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In fact due to the continuing influx of unstable modes
during inflation, the two-point function will become non-
perturbatively large[21]. How can we tame this growth
so as to be able to understand how the fluctuations
influence the evolution of the zero mode? One way
to do this is via the so-called Hartree approximation,
wherein interactions such as ¥?" are approximated by
P 5 an (U2) + by ()12 and Y2 s ¢, (%))
with the coefficients a,, b,, ¢, found by demanding that
the approximate theory reproduce the perturbative re-
sults for the zero, one and two-point functions of the full
theory. This has the effect of rendering the interacting
theory a Gaussian one, but with remnants of the inter-
action still present in the self-consistent computation of
(¥?). Diagrammatically, the Hartree approximation cor-
responds to summing the “cactus” diagrams of the the-
ory.

Turning back to the case of Natural Inflation, the
Hartree approximation involves inserting eq.(3) into
eq.(1), expanding the cosines and sines, and then making
the following replacements[21]:

)52 ()

sin (3{) N ?exp (- <2‘[}22>> . (5)

The equations for the field ¢, and the fluctuation modes
gr. coupled to the scale factor a (t) are

¢+ 3H(t)p — At exp (— <¢2>> sin <¢) =0,

f 2f? f
g+ 3H(t)gr + (6)

(2]

The effective Friedmann equation for the scale factor
is obtained by use of semiclassical gravity, i.e. by using
(T}.) to source the Einstein equations (here Mp, = Mpy/
/87 is the reduced Planck mass):

1 1. 1 . 1 -
1) = s |59 50 + g (902)

+A* (1 + cos (?) exp (— <21/}22>>>] , (7)

How do the inflationary dynamics of this system differ
from the usual dynamics of natural inflation (what we
will henceforth call “vanilla” NI)? We plot the evolution
of the zero mode, the fluctuations (1)?) and the Hubble
parameter below as functions of 7 = ut, where we define
p=A%/f, X\=A/f, o= f/Mp,. The figures below use
a =05 A=10"% ¢(0)/f = 2.85 x 1071%, parameters
for which vanilla NI would not give enough e-folds to give
a viable inflationary scenario.

As can be seen from figure 1, the zero mode ¢(t) starts
off following vanilla dynamics. This continues until the
unstable modes have made the fluctuations (1?)/2f? ~
O(A™%), at which point the dynamics become dominated
by the fluctuations and enter the spinodal regime. A
second phase of inflation begins, dominated by a potential
energy density given by the value of the potential at the
spinodal point, which for NI is half the original potential
energy density. The total number of e-folds for these
parameter choices is slightly over 200 and the last 60
e-folds are wholly contained within the second phase of
inflation.

As shown in ref.[21],the power spectrum can be com-
puted from

L (V(e+9)(0yV(e+¢))

) 3
(W) = / (;’)“ (02, (8)

which is evaluated at the time ¢, at which the mode first
crosses the horizon: k = a(t)H (t). For our potential this
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FIG. 1: (a) The field ¢ in units of f, (b) the fluctuations
(1?)/2f? in units of A=%, (c) The Hubble parameter H
in units of u = A%/f as functions of 7 = ut.

becomes

a2\ [1 — 747" cos (2@5” {1 + e cos (&)}
o oo (34 22)

)

(9)
where we have defined ¢ = ¢/ f, 52 as (12)/2f2 and 52 as
(1)?)/2f2. We can use this to read off the scalar spectral
index as well as the ratio of tensor to scalar fluctuations r;
for the above parameter choices, ny = 0.9736 and r = 6 X
1079 if the pivot scale k& = 0.002 Mpc ™! leaves 60 e-folds
before the end of inflation, while if this scale leaves at 50
e-folds before the end of inflation, we have ny = 0.9689
and r = 8.6 x 107%. While the former value of n, is a
little high compared to the central value of 0.965540.0062
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FIG. 2: The ratio of tensor to scalar fluctuations r as a
function of the spectral index ng, for models with total
number of e-folds ~ 200. N._g,1qs in the figure
corresponds to the number of e-folds before inflation
ends. Higher values of o = f/ Mp, correspond to the
points with larger values of 7.

(68% CL) found by Planck[1l], both are well within the
95% CL region in the ng — r plane. In figure 2 we show
how ng, r vary within a set of models with the same
number ~ 200 total number of e-folds but different values
of a = f/]\7[p1 ranging from 0.5 to 1. The trends we see
are the same as for the model considered above: ng is
consistent with data and r is unobservably small. In
light of the issues appearing in the interpretation of the
BICEP2[22] results, the smallness of r does not overly
concern us at this point[23-25]. There may be models
that result in a larger r, for a < 1, while keeping an
acceptable value of ng.

What we have exhibited here is a choice of parame-
ters for which all constraints on inflationary models are
satisfied starting with the potential for NI, yet no super-
Planckian field excursions occur; in fact f ~ Mp/10
(Mp, is the actual Planck mass). The details of whether
the spinodal phase of inflation occurs, and for how long
depends relatively sensitively on the initial conditions[21]
and the values for both ng and r will reflect this, making
it more difficult to give hard predictions for these values
than in vanilla NI.

How certain are we of the details of the spinodal dy-
namics? It is clear that something happens due to the
growth of fluctuations while the zero mode evolves within
the spinodal regime. The question is whether the Hartree
approximation captures enough of this dynamics to be re-
liable. Unfortunately, the Hartree approximation is not
a controlled one, so it is hard to quantify its accuracy.
However, it is the N — 1 limit of the large N approxima-
tion which when applied to inflation[26] exhibits behavior
remarkably similar to that seen here. The essential dif-
ference is that the presence of Goldstone modes in the
large N case leads to the spinodal line lying at the bot-
tom of the potential well. But long wavelength modes
grow large and can influence the dynamics in that sit-
uation, so we believe that the Hartree approximation is



capturing the most essential aspects of the evolution of
the system.

Another potential issue with the Hartree approxima-
tion is that it does not take scattering into account and it
might be argued that such effects might deplete the long
wavelength modes by scattering them into shorter wave-
length ones. While we cannot answer this conclusively
there has been some work on non-spinodally unstable
A¢p*[27] that argues that the two-point functions we are
following here behave in qualitatively similar ways when
scattering effects are accounted for.

Note that the modes that are driving the spinodal in-
stabilities are the extremely super-horizon ones, those
that would not yet have re-entered our horizon. Thus,
the integrals defining the various expectation values used
in our analysis are dominated by these modes while the
modes that will appear in the CMB sky can be treated
in the usual perturbative fashion.

We would argue then that it is premature to rule out
Natural Inflation models with f < Mp;. When the quan-
tum dynamics of the spinodally unstable modes is taken
into account, a second phase of inflation ensues, driven
by the energy density of these modes. This second phase
alone can give rise to a sufficient number of e-folds to
solve the horizon and flatness problem and, for some val-
ues of the parameters, ngs and r can take on values consis-
tent with current constraints. A more systematic search
of the parameter space of spinodal NI models needs to
be done; this is currently being undertaken by us. But
we are heartened to see that there are some parameters
for which the spinodal phase gives rise to a consistent
inflationary model.

Finally, we note that given the most recent PLANCK
results[1], inflationary models where the inflaton starts
in the concave part of the potential seem to be prefered.
Given that the inflaton will evolve towards a minimum
of this potential, a spinodal region will necessarily always
exist in such models. Thus our analysis, rather than
being a “one-off” for a particular model, will, in fact,
need to be applied to all such models.
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