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Quantum number-path entanglement is a resource for super-sensitive quantum metrology and in
particular provides for sub-shotnoise or even Heisenberg-limited sensitivity. However, such number-
path entanglement has thought to have been resource intensive to create in the first place — typi-
cally requiring either very strong nonlinearities, or nondeterministic preparation schemes with feed-
forward, which are difficult to implement. Very recently, arising from the study of quantum random
walks with multi-photon walkers, as well as the study of the computational complexity of passive
linear optical interferometers fed with single-photon inputs, it has been shown that such passive
linear optical devices generate a superexponentially large amount of number-path entanglement. A
logical question to ask is whether this entanglement may be exploited for quantum metrology. We
answer that question here in the affirmative by showing that a simple, passive, linear-optical in-
terferometer — fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode,
disjoint photodetection — is capable of significantly beating the shotnoise limit. Our result implies
a pathway forward to practical quantum metrology with readily available technology.

Ever since the early work of Yurke & Yuen it has been
understood that quantum number-path entanglement is
a resource for super-sensitive quantum metrology, allow-
ing for sensors that beat the shotnoise limit [1, 2]. Such
devices would then have applications to super-sensitive
gyroscopy [3], gravimetry [4], optical coherence tomogra-
phy [5], ellipsometry [6], magnetometry [7], protein con-
centration measurements [8], and microscopy [9, 10]. This
line of work culminated in the analysis of the bosonic
NOON state ((|N, 0〉+ |0, N〉)/

√
2, where N is the total

number of photons), which was shown to be optimal for
local phase estimation with a fixed, finite number of pho-
tons, and in fact allows one to hit the Heisenberg limit
and the Quantum Cramér-Rao Bound [11–14].

Let us consider the NOON state as an example, where
for this state in a two-mode interferometer we have the
condition of all N particles in the first mode (and none
in the second mode) superimposed with all N particles
in the second mode (and none in the first mode). While
such a state is known to be optimal for sensing, its gener-
ation is also known to be highly problematic and resource
intensive. There are two routes to preparing high-NOON
states: the first is to deploy very strong optical nonlin-
earities [15, 16], and the second is to prepare them us-
ing measurement and feed-forward [17–19]. In many ways
then NOON-state generators have had much in common
with all-optical quantum computers and therefore are
just as difficult to build [20]. In addition to the com-
plicated state preparation, typically a complicated mea-

surement scheme, such as parity measurement at each
output port, also had to be deployed [21].

Recently two independent lines of research, the study
of quantum random walks with multi-photon walkers in
passive linear-optical interferometers [22–24], as well as
the quantum complexity analysis of the mathematical
sampling problem using such devices [25, 26], has led to a
somewhat startling yet inescapable conclusion — passive,
multi-mode, linear-optical interferometers, fed with only
uncorrelated single photon inputs in each mode (Fig. 1),
produce quantum mechanical states of the photon field
with path-number entanglement that grows superexpo-
nentially fast in the two resources of mode and photon-
number [27]. What is remarkable is that this large de-
gree of number-path entanglement is not generated by
strong optical nonlinearities, nor by complicated mea-
surement and feed-forward schemes, but by the natural
evolution of the single photons in the passive linear op-
tical device. Whilst such devices are often described to
have ‘non-interacting’ photons in them, there is a type
of photon-photon interaction generated by the demand
of bosonic state symmetrization, which gives rise to the
superexponentially large number-path entanglement via
multiple applications of the Hong-Ou-Mandel effect [24].
It is known that linear optical evolution of single pho-
tons, followed by projective measurements, can give rise
to ‘effective’ strong optical nonlinearities, and we conjec-
ture that there is indeed a hidden Kerr-like nonlinearity
at work also in these interferometers [28]. Like boson-
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sampling [25], and unlike universal quantum computing
schemes such as that by Knill, Laflamme, and Milburn
[29], this protocol is deterministic and does not require
any ancillary photons.

The advantage of such a setup for quantum metrol-
ogy is that resources for generating and detecting single
photons have become quite standardized and relatively
straightforward to implement in the lab [30–36]. The
community then is moving towards single photons, lin-
ear interferometers, and single-photon detectors all on a
single, integrated, photonic chip, which then facilitates a
roadmap for scaling up devices to large numbers of modes
and photons. If all of this work could be put to use for
quantum metrology, then a road to scalable metrology
with number states would be at hand.

It then becomes a natural question to ask — since
number-path entanglement is known to be a resource
for quantum metrology — can a passive, multi-mode
interferometer, fed only with easy-to-generate uncorre-
lated single photons in each mode, followed by uncor-
related single-photon measurements at each output, be
constructed to exploit this number-path entanglement for
super-sensitive (sub-shotnoise) operation? The answer is
indeed yes, as we shall now show.

The phase-sensitivity, ∆ϕ, of a metrology device can
be defined in terms of the standard error propagation
formula as,

∆ϕ =

√
〈Ô2〉 − 〈Ô〉2∣∣∣∂〈Ô〉∂ϕ

∣∣∣ , (1)

where 〈Ô〉 is the expectation of the observable being mea-
sured and ϕ is the unknown phase we seek to estimate.

The photons evolve through a unitary network accord-
ing to Ua†iU

† =
∑
j Uija

†
j . In our protocol, we construct

the n-mode interferometer Û to be,

Û = V̂ · Φ̂ · Θ̂ · V̂ †, (2)

which we call the quantum fourier transform interferom-
eter (QuFTI) because V̂ is the n-mode quantum Fourier
transform matrix, with matrix elements given by,

V
(n)
j,k =

1√
n

exp

[−2ijkπ

n

]
. (3)

Φ̂ and Θ̂ are both diagonal matrices with linearly increas-
ing phases along the diagonal represented by,

Φj,k = δj,k exp
[
i(j − 1)ϕ

]
Θj,k = δj,k exp

[
i(j − 1)θ

]
, (4)

where ϕ is the unknown phase one would like to measure
and θ is the control phase. Θ̂ is introduced as a reference,
which can calibrate the device by tuning θ appropriately.

To see this tuning we combine Φ̂ and Θ̂ into a single
diagonal matrix with a gradient given by,

Φj,k ·Θj,k = δj,k exp

[
i(j − 1)(ϕ+ θ)

]
. (5)

The control phase θ can shift this gradient to the optimal
measurement regime, which can be found by minimizing
∆ϕ with respect to n and ϕ. Since this is a shift according
to a known phase, we can for simplicity assume (and
without loss of generality) that ϕ is in the optimal regime
for measurements and θ = 0. Thus, Θ̂ = Î and is left out
of our analysis for simplicity.
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FIG. 1: Architecture of the quantum fourier transform
interferometer (QuFTI) for metrology using single-photon
states. The input state comprises n single photons, |1〉⊗n.
The state evolves via the passive linear optics unitary
Û = V̂ · Φ̂ · Θ̂ · V̂ †, where V̂ is the quantum Fourier trans-
form, Φ̂ is an unknown, linear phase gradient, and Θ̂ is a
reference phase gradient used for calibration. At the output
we perform a coincidence photodetection projecting on ex-
actly one photon per output mode, measuring the observable
Ô = (|1〉〈1|)⊗n, which, over many measurements, yields the
probability distribution P (ϕ) that acts as a witness for the
unknown phase ϕ.

In order to understand how such a linearly increasing
array of unknown phase shifts may be arranged in a prac-
tical device, it is useful to consider a specific example.
Let us suppose that we are to use the quantum fourier
transform interferometer (QuFTI) as an optical magne-
tometer. We consider an interferometric magnetometer
of the type discussed in Ref. [37], where each of the sens-
ing modes of the QuFTI contains a gas cell of Rubidium
prepared in a state of electromagnetically induced trans-
parency (EIT) manually designed to implement the linear
phase gradient. In this state, a photon passing through
the cell at the point of zero absorption in the EIT spec-
trum acquires a phase shift that is proportional to the
product of an applied uniform (but unknown) magnetic
field and the length of the cell. We assume that the field
is uniform across the QuFTI, as would be the case if the
entire interferometer was constructed on an all optical
chip and the field gradient across the chip were negligi-
ble. Since we are carrying out local phase measurements
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(not global) we are not interested in the magnitude of the
magnetic field but wish to know if the field changes and
if so by how much. (Often we are interested in if the field
is oscillating and with what frequency.) Neglecting other
sources of noise then in an ordinary Mach-Zehnder inter-
ferometer this limit would be set by the photon shotnoise
limit. To construct a QuFTI with the linear cascade of
phase shifters, as shown in Fig. 1, we simply increase the
length of the cell by integer amounts in each mode. The
first cell has length L, the second length 2L, and so forth.
This will then give us the linearly increasing configura-
tion of unknown phase shifts required for the QuFTI to
beat the shotnoise limit.

One might question why one would employ a phase
gradient rather than just a single phase. Investigation
into using a single phase in Φ̂ indicates that this yields no
benefit. We conjecture that this is because the number
of paths interrogating a phase in a single mode is not
superexponential as is the case when a phase gradient is
employed.

The interferometer may always be constructed effi-
ciently following the protocol of Reck et al. [38], who
showed that an n× n linear optics interferometer may
be constructed from O(n2) linear optical elements (beam-
splitters and phase-shifters), and the algorithm for deter-
mining the circuit has runtime polynomial in n. Thus, an
experimental implementation of our protocol may always
be efficiently realized.

The input state to the device is |1〉⊗n, i.e. single pho-
tons inputed in each mode. If ϕ = 0 then Φ̂ = Î and thus
Û = V̂ · Î · V̂ † = Î. In this instance, the output state is
exactly equal to the input state, |1〉⊗n. Thus, if we de-
fine P as the coincidence probability of measuring one
photon in each mode at the output, then P = 1 when
ϕ = 0. When ϕ 6= 0, in general P < 1. Thus, intuitively,
we anticipate that P (ϕ) will act as a witness for ϕ.

In the protocol, assuming a lossless device, no measure-
ment events are discarded. Upon repeating the protocol
many times, let x be the number of measurement out-
comes with exactly one photon per mode, and y be the
number of measurement outcomes without exactly one
photon per mode. Then P is calculated as P = x/(x+y).
Thus, all measurement outcomes contribute to the signal
and none are discarded. Note that, due to preservation
of photon-number and the fact that we are considering
the anti-bunched outcome, P (ϕ) may be experimentally
determined using non-number-resolving detectors if the
device is lossless. If the device is assumed to be lossy,
then number-resolving detectors would be necessary to
distinguish between an error outcome and one in which
more than one photon exits the same mode. The circuit
for the architecture is shown in Fig. 1.

The state at the output to the device is a highly path-
entangled superposition of

(
2n−1
n

)
terms, which grows su-

perexponentially with n. This corresponds to the number
of ways to add n non-negative integers whose sum is n, or

equivalently, the number of ways to put n indistinguish-
able balls into n distinguishable boxes. We conjecture
that this superexponential path-entanglement yields im-
proved phase-sensitivity as the paths query the phases a
superexponential number of times.

The observable being measured is the projection onto
the state with exactly one photon per output mode,
Ô = (|1〉〈1|)⊗n. Thus, 〈Ô〉 = 〈Ô2〉 = P . And, the phase-
sensitivity estimator reduces to,

∆ϕ =

√
P − P 2∣∣∣∂P∂ϕ ∣∣∣ . (6)

Following the result of [39], P is related to the perma-
nent of Û as,

P =
∣∣Per(U)

∣∣2. (7)

Here the permanent of the full n× n matrix is computed,
since exactly one photon is going into and out of every
mode. This is unlike the boson-sampling protocol [25]
where permanents of sub-matrices are computed.

We will now examine the structure of this permanent.
The matrix form for the n-mode unitary Û (n) is given by,

U
(n)
j,k =

1− einϕ
n(e2iπ(j−k)/n − eiϕ)

, (8)

as derived in [40]. Taking the permanent of this matrix
is challenging as calculating permanents are in general
#P-hard. However, based on calculating Per(Û (n)) for
small n, we observe the empirical pattern,

Per(Û (n)) =
1

nn−1

n−1∏
j=1

[
jeinϕ + n− j

]
, (9)

as conjectured in [40]. This analytic pattern we observe
is not a proof of the permanent, but an empirical pat-
tern — a conjecture — that has been verified by brute
force to be correct up to n = 25. Although we don’t
have a proof beyond that point, n = 25 is well beyond
what will be experimentally viable in the near future, and
thus the pattern we observe is sufficient for experimen-
tally enabling super-sensitive metrology with technology
available in the foreseeable future.

Following as a corollary to the previous conjecture, the
coincidence probability of measuring one photon in each
mode is,

P =
∣∣∣Per(Û (n))

∣∣∣2
=

1

n2n−2

n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

]
, (10)

as shown in [40], where

an(j) = 2j(n− j),
bn(j) = n2 − 2jn+ 2j2. (11)
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FIG. 2: Coincidence photodetection probability P against the
unknown phase ϕ and the number of photons and modes n.
As n increases, the dependence of P on ϕ increases, resulting
in improved phase-sensitivity.

The dependence of P on n and ϕ is shown in Fig. 2.
It then follows that,∣∣∣∣∂P∂ϕ

∣∣∣∣ = nP
∣∣sin(nϕ)

∣∣ n−1∑
j=1

an(j)

an(j)cos(nϕ) + bn(j)
, (12)

as shown in [40].
Finally, we wish to establish the scaling of ∆ϕ. With

a small ϕ approximation (sin(ϕ) ≈ ϕ, cos(ϕ) ≈ 1− 1
2ϕ

2)
we find,

∆ϕ =

√
3

2n(n+ 1)(n− 1)
(13)

=
1

2
√(

n+1
3

) ,
as shown in [40]. Thus, the phase sensitivity scales as
∆ϕ = O(1/n3/2) as shown in Fig. 3.

We would like to compare the performance of our
QuFTI to an equivalent multimode interferometer base-
line for which we will construct the shotnoise limit (SNL)
and Heisenberg limit (HL). This is a subtle compari-
son, due to the linearly increasing unknown phase-shifts,
{0, ϕ, . . . , (n− 1)ϕ}, that the QuFTI requires to oper-
ate. The mathematical relation is shown in Fig. 3, where
we have converted the number of resources, N , to the
number of photons, n. There is disagreement in the com-
munity on how such resources should be counted. This is
the method that we feel most fairly counts our resources.
A more detailed supporting discussion can be found in
[40].

We have shown that a passive linear optics network fed
with single-photon Fock states may implement quantum
metrology with phase-sensitivity that beats the shotnoise
limit. Unlike other schemes that employ exotic states

FIG. 3: Phase-sensitivity ∆ϕ against the number of photons n
(red circles). The shotnoise limit of 1/

√
N (black squares) and

Heisenberg limit of 1/N (orange triangles) are shown for com-
parison. The QuFTI exhibits phase-sensitivity significantly
better than the shotnoise limit, and only slightly worse than
the Heisenberg limit.

such as NOON states, which are notoriously difficult to
prepare, single-photon states may be readily prepared
in the laboratory using present-day technology. Further-
more, we show in [40] that this network is far more ro-
bust against dephasing than the NOON state. This new
approach to metrology via easy-to-prepare single-photon
states and disjoint photodetection provides a road to-
wards improved quantum metrology with frugal physical
resources.

While computing the sensitivity using the standard er-
ror propagation formula of Eq. 1 provides clear evidence
that our scheme does indeed beat the SNL, it would be in-
structive to carry out a calculation of the quantum Fisher
information and thereby provide the quantum Cramér-
Rao bound, which would be a true measure of the best
performance of this scheme possible, according to the
laws of quantum theory. However, due to the need to
compute the permanent of large matrices with complex
entries, this calculation currently remains intractable. We
will continue to investigate such a computation for a fu-
ture work. In general, analytic solutions to matrix per-
manents are not possible. In this instance, the analytic
result is facilitated by the specific structure of the QuFTI
unitary. Other inhomogeneous phase gradients may yield
analytic results, but we leave this for future work.
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