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Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium
is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD
algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting
phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water
we find the statistical temperature from the enthalpy histograms and characterize the transition by
the entropy, introducing a general computational procedure for first-order transitions.
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Gas hydrates are solutions of small guest solutes trapped in the cages of a water lattice, β ice. Many gases form
hydrates under proper conditions of temperature and pressure, at concentrations 2–3 orders of magnitude greater than
normal solvation for hydrophobic solutes. Methane hydrate is among the most important. Its significance for the
energy sector is well appreciated, with estimates of methane held ranging from tens to hundreds times conventional
reserves [1, 2]. The threat to climate of the release of methane greenhouse gas is of growing concern [3–6].

The phase equilibrium of β ice is central to hydrate formation and stability. The Gibbs free energy penalty for
liquid→β ice is small at 273 K [7], and the pressure can be increased until occupation of the cages by guests results
in a thermodynamically favored hydrate.

Simulation studies are difficult because first-order phase transitions proceed through a sequence of states with
coexisting phases, which are not easily sampled by conventional methods.

The root of the problem is that the entropy, S(H), as a function of the enthalpy, H, exhibits a “convex intruder”
interval of positive second derivative, and the statistical temperature, TS(H) = 1/(dS/dH), exhibits an S-loop (Fig. 1).
Recalling van der Waals theory, the states in the coexisting enthalpy range are often called metastable and, between
the extrema, unstable. However, in constant temperature simulations they are simply states with a low sampling
weight. The loop arises from finite-system-size surface effects at the interfaces of the coexisting phases, not instability,
as has been emphasized earlier [8–10].

The higher the barrier to the transition, the more pronounced the loop and the more difficult the simulation. In
particular, the barrier for the freezing of water is very pronounced. For a constant temperature ensemble near the
transition temperature (green solid line in Fig. 1), the equation, T = TS(H∗), for the extrema, H?, of the enthalpy
distribution has three solutions, two maxima and a minimum, corresponding to the low and high enthalpy states, H1

and H2, of the transition and the barrier, Hbar. These points correspond to two minima and a maximum in the Gibbs
free energy profile at the indicated temperature. The coexisting states around the barrier are rarely visited and the
system is stuck in one of the free energy minima.

With a high barrier, strong supercooling or superheating, and nonequilibrium processes, are required to drive the
transition, possibly distorting the results. That is, T is not a good control variable [10–13], a primary cause of the
challenge of understanding the mechanism of hydrate formation [14–19]. Therefore, alternatives to isothermal-isobaric
algorithms, which have been used almost exclusively for hydrate simulations, are desirable.

In the following we use the generalized replica exchange method (gREM) [20] with an optimally-designed sampling
weight, Wα = exp(−wα(H)), wα being the effective potential in replica α. For a comprehensive sampling of phase-
coexistence states, which are inaccessible in a constant-temperature ensemble, we tailored the effective potential,

wα(H) =
∫H

(1/Tα(H ′))dH ′, with an enthalpy-dependent generalized temperature,

Tα(H) = λα + η(H −H0), (1)

H0 being the reference enthalpy. Using a sufficiently large negative η ensures a single intersection between Tα(H)
and TS(H), and the resulting enthalpy distributions become unimodal at H?

α, determined by Tα(H∗α) = TS(H∗α).
Since, for a given slope η, the value of H?

α is controlled by the parameter λα, varying λα allows exploration of the
phase-coexistence using enthalpy as the control variable, with two phases smoothly joined via a succession of unimodal
distributions.

Previously the gREM has been implemented as a generalized Monte Carlo algorithm [20–23]. Here we introduce a
faster constant pressure molecular dynamics (MD) version, by treating the volume as an additional coordinate [24]
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and introducing effective potential kBT0 wα(H), where H = U + p0V , p0 is the pressure, and T0 is the ‘kinetic”
temperature. Then, isothermal-isobaric MD at T0 samples the desired weight. The forces are those of the true
potential, U , scaled by (T0/Tα(H)). Separating T0, which controls the velocities, from the configurational Tα(H)
allows sampling of low-enthalpy configurations with fast particles. The method was implemented by our group as a
module in LAMMPS [25, 26].

MD gREM simulations, the first for a bulk water crystal/liquid transition, were performed for 2944 waters in 54
replicas under pressure of 1 atm and T0 = 330 K, and initially in perfect β ice configurations in symmetry SI, using
the mW coarse-grained model [17] with periodic boundary conditions.

Although β ice is never the thermodynamically stable state, the barrier to stable hexagonal α ice insures that it
will not be sampled under these conditions and the metastable β ice-liquid transition is well defined in the restricted
configuration space.

Representative mixed-phase configurations across the transition from β ice to liquid water, stabilized in equilibrium
by gREM, are displayed in Fig. 2. The observed states are β ice, ice with a small spherical liquid region, a cylinder of
liquid in ice, two types of slabs of ice and liquid with a flat interface differing by the number of layers of β ice cages,
and finally liquid.

Videos of simulations starting from β ice and leading to coexisting states of β ice and liquid water in stable
equilibrium can be found in the Supplementary Materials. For these simulations we used generalized quenching,
switching Tα(H) so it crosses TS(H) at the desired final enthalpy in single replica simulations.

Mixed-phase configurations in Fig. 2 are separated by barriers. Fig. 3 shows the enthalpy versus time for the
replicas around these barriers, top, and the enthalpy histograms for all the replicas, bottom. Exchanges involving
configurations on different sides of a barrier, especially for liquid water and a slab of liquid and ice (top two replicas
in Fig. 3) are infrequent due to the barrier, which is not surprising given the difficulty of simulating the freezing of
water. Nevertheless, in contrast to what would be found with constant-T simulations, they do occur. The coexistence
regime is well covered.

We applied the ST-WHAM method [13], a non-iterative alternative to the original WHAM [27], to efficiently
combine data from multiple replicas by determining a piece of TS in each replica from the enthalpy histogram, and
merging them to form the complete TS function.

The statistical temperature is shown in Fig. 4(a), along with its inverse, βS(H), in Fig. 4(b). An S-loop with
considerable structure is apparent. The maximum and minimum of TS(H) are the limits of stability of the homo-
geneous phases, 341.4 K and 207.8 K. The upper temperature, Tu, agrees with the range 340-350 K found in the
previous, isothermal-isobaric study [19], and the lower, Tl, is above that given for the mW α ice-liquid transformation,
202 K [28], and so β ice does not form α ice upon melting.

The constant-T Maxwell construction becomes an equal-area construction (gray dashed areas in Fig. 4(b)) for
βS(H) in the microcanonical ensemble, yielding the equilibrium melting temperature, Tm = 256.4 K (blue dashed line
in Fig. 4(a)).

The enthalpy range with β′S(H) = d2S(H)/dH2 > 0 corresponds to the convex intruder (see Fig. 4(c)). In the
microcanonical approach [10–12], a peak of β′S(H) identifies a transition, and a positive value indicates that it is first-
order. The “subphase” transitions connect the distinct coexisting-phase states [8] shown in Fig. 2. Being governed by
surface effects, they are size- and shape-dependent, and the subphase transitions should vanish in the thermodynamic
limit. The transition from homogeneous β ice to ice with a liquid droplet is a version of the evaporation-condensation
transition [8, 9].

The calculated transition temperature is related to a plateau in TS(H) corresponding to a system with 1/3 liquid
and 2/3 ice. Melting one layer of β ice leads to a system with 1/2 liquid and 1/2 ice and to the appearance of the next
plateau at ≈ 246.5 K, close to the previously published transition temperature value of 245 K [19]. Upon melting an
additional layer we observe the transition with the strongest peak in β′(H) that leads to fully liquid system. Perhaps
the method of direct constant-T phase coexistence used in Ref. [19], with system volume equally divided between two
phases, is related to TS on the plateau with 1/2 liquid and 1/2 ice.

Fig. 4(d) shows the entropy to within an additive constant, S(H) =
∫H

dH ′/TS(H ′), and the linear Gibbs hull,
SG(H) = S(H1) + (H − H1)/Tm, which is tangent to S(H) at H1 and H2. The difference, ∆S = SG(H) − S(H),
enhanced through the transition regime, is shown as S − 4∆S (the “4” is arbitrarily chosen for visibility of the
intruder). The maximum value of ∆S, occurring at Hbar and equal to 0.00105 kJ/mol K, is defined as the surface
entropy, ∆Ssurf , a direct measure of the strength of surface effects [10–12], which cause the intruder and the S-loop.
The hull represents the entropy of a hypothetical mixture of phases with no surface effects. The true entropy is lower
because coexisting states are shifted to higher enthalpy by surface effects, depleting the density of states.

We write S(H) = S(H1)+(S(H)−S(H1), use the definitions of SG and ∆Ssurf , and find that ∆Ssurf = ∆Gbar/Tm,
where ∆Gbar is the Gibbs free energy barrier height, demonstrating again a microcanonical route to a quantity
routinely computed in the canonical ensemble. If we attribute the barrier to surface effects, ∆Ssurf becomes an
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estimator of the surface tension, γ = Tm∆Ssurf/σ, where σ is the surface area. Evaluating σ is nontrivial. However,
if the barrier occurs with the coexisting states in a slab configuration, 2L2 is a good approximation to σ, where L is
the box length, and 2 comes from the presence of two surfaces with periodic boundary conditions [8]. In this way the
β ice/liquid surface tension is determined as 26.3 mJ/m2, which is close to published values for hydrate/liquid and α
ice/liquid [29].

Fig. 4(d) yields the latent heat and the entropy of fusion, 4.505 kJ/mol and 17.46 J/mol K, respectively, previously
estimated as 4.39 kJ/mol and 17.9 J/mol K [19].

The Gibbs free energy profile at Tm, G(H) = H − TmS(H), connecting the phases at enthalpies H1 and H2, is
shown in Fig. 4(e). The barrier height is estimated as 0.27 kJ/mol. If we take T as the control variable, the Gibbs free
energy, now evaluated as H(TS)−TSS(TS), is triple-valued in the coexistence regime, with equilibrium corresponding
to the lowest branch and the transition at the crossing of the two lower branches (Fig. 5). Clearly, using enthalpy as
the control variable gives a simpler description.

Our results suggest a unified computational entropic approach to the study of first-order transitions that is capable
of treating even the crystal/liquid case in water:

• Simulate the system with the MD version of gREM.

• Extract the statistical temperature from the enthalpy (or energy) histogram in each replica and join them with
ST-WHAM to obtain TS .

• Analyze phase equilibrium using βS(H) = 1/TS(H), identifying transition enthalpies via the peaks in β′S .

The MD version of gREM can be used to cover an interesting range of temperature and enthalpy, or as a single
simulation in a generalized quench to observe the evolution of the system to eventual stable equilibrium in a coexisting
state at a selected point on the TS(H) curve. Here Tα(H) is decreased for all H by changing λα in Tα(H), just as the
control variable, T , is decreased in an ordinary quench.
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FIG. 1: (Color online) With an S-loop the statistical temperature (black, blue) intersects the green constant-T line at H1,
Hbar, and H2. Blue line represents region of coexisting states with strong surface effects in a simulation, or unstable states in
a van der Waals model. Orange dashed lines are examples of generalized temperature Tα(H), see Eq. (1).
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FIG. 2: (Color online) Configurations in stable equilibrium as enthalpy increases from left to right across the coexistence range:
β ice, liquid droplet in β ice, liquid cylinder in β ice, slabs of liquid and ice, and liquid. Top and bottom represent top and side
views with blue bonds between molecules forming β ice and red for liquid.
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FIG. 3: (Color online) Top: Enthalpy versus time for replicas near the barriers to configurational transitions demonstrates
that gREM allows exchanges for good sampling even across barriers. Bottom: Enthalpy histograms of all the replicas (replicas
around barriers, shown on plot above, are in solid) show that the coexistence range is sampled without gaps.
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FIG. 4: (Color online) Different aspects of the β ice-liquid transition revealed by the entropic analysis: (a) the statistical
temperature, TS(H), with transition temperature shown in blue. Upper and lower limits of stability shown as Tu and Tl; (b)
its inverse, βS(H), where equal areas used in Maxwell construction are shaded; (c) β′S(H) with peaks identifying subphase
transitions; (d) entropy S(H) in black, Gibbs hull in blue connects inflection points on entropy curve, entropy with magnified
deviation from Gibbs hull as S − 4∆S in violet (to enhance visibility of convex intruder), surface entropy in red. Arrows show
the latent heat and entropy of fusion; (e) Gibbs free energy profile at equilibrium transition temperature with barrier height
indicated by an arrow.
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FIG. 5: (Color online) Temperature-dependent Gibbs free energy evaluated as G(TS) = H(TS) − TSS(TS) with closed loop
characteristic of first-order phase transition. The crossing point corresponds to points H1 and H2 in Fig. 4, where the coexisting
phases have equal free energy, while the turning points correspond to Tl and Tu, the limits of stability.


