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Rough or patterned surfaces infused with a lubricating liquid display many of the same use-
ful properties as conventional gas-cushioned superhydrophobic surfaces. However, liquid-infused
surfaces exhibit a new failure mode: the infused liquid film may drain due to an external shear
flow, causing the surface to lose its advantageous properties. We examine shear-driven drainage
of liquid-infused surfaces with the goal of understanding and thereby mitigating this failure mode.
On patterned surfaces exposed to a known shear stress, we find that a finite length of the surface
remains wetted indefinitely, despite the fact that no physical barriers prevent drainage. We develop
an analytical model to explain our experimental results, and find that the steady-state retention
results from the ability of patterned surfaces to wick wetting liquids, and is thus analogous to cap-
illary rise. We establish the geometric surface parameters governing fluid retention and show how
these parameters can describe even random substrate patterns.

PACS numbers: 68.08.Bc, 68.35.Ct, 47.15.gm, 47.60.Dx

Liquid-infused surfaces demonstrate a remarkable ar-
ray of useful properties, from omniphobicity [1–3] and
bio-fouling resistance [4], to enhanced heat transfer [5, 6]
and drag reduction [7–9]. Unlike traditional superhy-
drophobic materials, liquid-infused surfaces are robust
against pressure-induced failure, making them particu-
larly attractive for submerged applications [10–16]. How-
ever, when these surfaces are immersed in dynamic fluid
environments, external flow can shear away the infused
liquid layer that is responsible for their unique properties.

Robust implementation of liquid-infused surfaces thus
requires a thorough understanding of the dynamics of
a liquid lubricant trapped within a patterned substrate
that is exposed to shear. This fundamental shear-driven
drainage problem also applies to a wide variety of struc-
turally similar situations, including cleaning oily surface
contaminants from textiles [17], extraction of residual oil
from permeable rocks [18], liquid-vapor interactions in
micro-patterned heat pipes [19, 20], and the shear flow
over hydrophobic mucus trapped on rough biological tis-
sue [21, 22]. Existing theories that govern liquid films
trapped in rough or patterned surfaces are able to de-
scribe the process of imbibition [23–26], the flow of a
superficial fluid film above the height of the underlying
surface pattern [27, 28], and the static configurations of
wetting drops [29]. In addition, the steady-state shape
of a shear- or gravity-driven film that coats individual
surface features has been explored [30–33]. Despite these
advances, current theories are unable to predict whether
a patterned surface will retain an infused liquid when
subject to an external flow.

We report a series of experiments to study the behavior
of liquid-infused patterned surfaces exposed to the flow
of an immiscible liquid. A microfluidic flow cell was con-
structed from transparent epoxy [34] with a patterned
surface imprinted on a section of its floor (Fig. 1(a)-

(c)). The surface pattern in this experiment consists of
50 streamwise grooves with width w = 8.8− 9.2 µm and
height h = 10.0 µm (Fig. 1(d)) that end upstream in a
1 mm by 1 mm well of equal depth to create the open
end shown schematically in Fig. 2(c). The pattern is
initially filled with silicone oil mixed with fluorescent dye
(viscosity µo = 42.7 or 201 mPa·s), and connects to a
downstream reservoir of oil at the terminus of the flow
cell. The external aqueous fluid (a 1:1 wt. mixture of
glycerol and water, viscosity µaq = 5.4 mPa·s) enters the
upstream inlet of the device, and exits through a slot-
shaped outlet that is upstream of the terminus. This
configuration ensures that the draining oil does not block
the flow of the external phase, and that the external flow
is not constricted as it exits the device. The flow cell
(height H = 180 µm and width W = 7 mm) is thin
but still much deeper than the pattern, so that the flow
profile is approximately parabolic through its depth and
uniform through its width. Thus a flow rate Q imposes
a shear stress τyx = 6µaqQ/WH2 on the pattern.

Using micro-fabricated grooves to study lubricant
drainage ensures a controlled and reproducible surface
topography that is invariant in the streamwise direction,
thereby providing a system amenable to a fluid dynamical
description. The lessons learned from studying this geom-
etry can be applied to predicting the drainage behavior
of surfaces with more complicated topographies, as we
demonstrate below. Indeed, there is a strong precedent in
the study of capillary flows for such a ‘reduced-order’ ap-
proach to treating complicated geometries [23, 28]. The
particular geometry of streamwise grooves also represents
what appears to be the ‘worst-case’ surface configura-
tion for oil retention. This worst-case scenario is in-
structive for evaluating many real-world liquid-infused
surfaces, since rough surfaces inevitably have some de-
gree of streamwise connectivity – either by accident or
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by design – that allows fluid in upstream portions of the
pattern to drain downstream.

The behavior of the oil phase was observed using flu-
orescence macro photography. A time series of pho-
tographs from a typical experiment is shown in Fig. 1(c),
demonstrating the characteristic drainage behavior (see
Movie 1): under the influence of shear from the aque-
ous phase, the oil in the upstream portion of the pat-
tern dewets first, with a dewetting front that propagates
downstream. The front initially propagates rapidly, be-
fore slowing and eventually stopping at a steady-state
streamwise position; the length of fluid retained in the
pattern between this final front location and the slot-
shaped outlet is defined as the steady-state length, L∞

(Fig. 1(c)).

Since the streamwise grooves terminate in a fluid reser-
voir, there is no physical barrier to drainage of the oil, and
thus the existence of steady-state oil retention may seem
non-intuitive. To clarify the mechanism that leads to
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FIG. 1. (a) Cross-section of the microfluidic flow cell, show-
ing the configuration at the beginning of an experiment. Dis-
tances in the y-direction are exaggerated. The aqueous solu-
tion (blue) flows in the left inlet and out the first (slot-shaped)
outlet. The grooves are filled with oil (green), and connect to
the reservoir of oil at the flow cell terminus. (b) This plan-
form view shows the entire device before drainage commences.
Low viscosity oil fills the 50 longitudinal grooves at the center
of the device and fluoresces green. (c) Snapshots of a sample
shear-driven drainage experiment subject to an aqueous flow
of Q = 2 mL/min (τyx = 5.2 Pa). (d) Micrograph of the
silicon wafer micro-pattern that is used to mold the grooves,
including the surface profile (purple). Grooves appear dark
gray and walls appear light gray.
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FIG. 2. (a) Representative groove cross-sections from the
steady-state configuration of an experiment conducted at Q =
2mL/min with low viscosity oil, taken at the outlet slot (x = 0
mm) and the far upstream end of the wetted groove (x =
−5.5 mm). (b) The steady-state deflection at the center of
the groove, δ(x), with theoretical predictions (Supplemental
Material) plotted as dashed lines. Gray is low viscosity oil at
Q = 2 mL/min, red is high viscosity oil at the same flow rate,
and blue is low viscosity oil at Q = 1 mL/min. (c) Schematic
of one groove, showing geometric parameters and the shape
of the interface deduced from (b).

oil retention, we perform identical experiments using a
confocal microscope, and observe the steady-state con-
figuration of the oil at the scale of the pattern itself.
Cross-sectional (yz-plane) images of the steady-state oil
distribution are taken at regular intervals in the stream-
wise (x) direction along the length of the filled portion of
the groove. Two representative images are shown in Fig.
2(a). The fluorescent oil (represented as red) is index-
matched with the solid so that the interface between the
oil/solid and aqueous phase is visible in reflection (repre-
sented as green).

The oil-aqueous interface is deflected inward towards
the substrate and appears to have a constant curvature,
κ, in the cross-sectional (yz) plane. Because the length
of the filled portion of the groove is much longer than
the width or height of the groove, this cross-sectional
interfacial curvature dominates over curvature in the
streamwise/wall-normal (xy) plane. The pressure drop
across a curved liquid-liquid interface is equal to κ multi-
plied by the surface tension of the interface, γ. Since the
interface is deflected inwards, the pressure is lower in the
oil than in the aqueous phase. Thus, the pressure within
the oil decreases in the direction opposite the flow of the
external phase. This adverse pressure gradient drives
recirculation of the oil trapped in the groove, counter-
ing the external shear stress, and provides the physical
mechanism for a steady-state wetting configuration un-



3

der shear.

We note that this explanation of the oil retention mech-
anism rests on a number of assumptions about the sys-
tem: the Reynolds number in the oil ρoτyxh

2/µ2
o ≪ 1,

indicating negligible inertial effects, and the Bond num-
ber w2g(ρaq − ρo)/γ ≪ 1 , indicating that gravity is neg-
ligible. These assumptions apply to most applications
of liquid-infused surfaces. Furthermore, we ignore long-
range forces (such as van der Waals); though this assump-
tion is valid for the micro-scale patterns of the current ex-
periment, long-range forces may be relevant for certain
chemistries on surfaces with nano-scale geometries. Fi-
nally, we assume that µo ≫ µaq, so that the shear stress
imposed by the aqueous flow is effectively unchanged by
the oil.

The adverse pressure gradient driving oil in the up-
stream direction depends on the gradient in curvature of
the interface over the length of the groove. At the down-
stream end, where the aqueous fluid exits the flow cell,
the interface is flat, indicating zero pressure drop across
the interface. At the upstream end, the minimum radius
of curvature, rmin, is determined by the groove width, w,
and the receding contact angle, θ, or, for wider grooves,
the aspect ratio of the groove, w/h. The interfacial deflec-
tion at the groove center, δ, varies as δ ∼ x between these
two limits, as shown in Fig. 2(b). Since δ ∼ κ for small
deflections, dκ/dx is approximately constant, indicating
that the pressure gradient within the oil is constant.

We now construct a quantitative model to predict the
dynamics of drainage from the grooved pattern based on
the flow reversal mechanism we inferred from interfacial
measurements. Our goal is to predict how the wetted
length of the groove, L(t), evolves under the action of
an applied shear stress, τyx. The most direct approach
to determining L(t) is to develop a volume-balance con-
servation equation for the flux of oil out of the groove.
Details of the derivation are provided in the Supplemen-
tal Material [35], but we outline the model now.
The time derivative of the volume of oil in a groove

of filled length L(t) is given by cdwhdL/dt, where cd
is a constant that depends on the aspect ratio of the
groove, w/h, and represents the average fraction of the
groove’s cross-section, wh, that is oil-filled. This time
derivative must equal the sum of the downstream flux of
oil driven by shear and the upstream flux of oil driven
by the pressure gradient. The oil flux induced by a shear
stress τyx is given by −csτyxwh

2/µo, where the sign in-
dicates that the flux acts to decrease the volume of oil
in the groove. The constant cs depends on the aspect
ratio w/h, and accounts for the hydrodynamic resistance
imposed by the walls and floor of the groove. The flux
of oil driven upstream by the pressure gradient can be
related to the change in interfacial curvature over the
wetted length of the groove, as described above. The to-
tal pressure drop is proportional to 1/rmin; the pressure
gradient is distributed along the oil-filled length and is

therefore proportional to 1/L. Thus, the pressure-driven
recirculation flux is given by cpwh

3γ/(µorminL), where cp
is another hydrodynamic resistance constant dependent
on w/h. Summing these three terms to enforce volume
conservation yields

cdwh
dL

dt
= −

csτyxwh
2

µo

+
cpwh

3γ

µormin

1

L
. (1)

The steady-state length of oil, L∞, is found by setting
the left-hand side of Eq. (1) equal to zero, yielding

L∞ =

(

cph

csrmin

)

γ

τyx
, (2)

where the pre-factor contains all effects of the groove
geometry. Using L∞ as a length-scale for non-
dimensionalizing Eq. (1), a corresponding time-scale
is tc = cdcpµoγ/(c

2
srminτ

2
yx), thus yielding a non-

dimensional ordinary differential equation with no free
parameters; this equation appears in the same form as
the Lucas-Washburn equation that describes the dynam-
ics of capillary rise [36, 37]. Thus, L∞ is a shear-driven
equivalent to the classical capillary rise height, and re-
sults from the ability of patterned surfaces to wick wet-
ting fluids.
The proposed model for groove drainage was vali-

dated against macroscale measurements of how the wet-
ted length of the grooves changes as a function of time.
Fig. 3(a)-(b) show the measured drainage behavior at
two different shear rates, and how the non-dimensional
scales collapse both drainage trends towards the univer-
sal theoretical prediction. An important consequence of
the analysis is that the steady-state length, L∞, does not
depend on the viscosity of the fluid in the groove, µo (see
Eq. (2)). Thus, µo can be used as a design parameter in
the construction of liquid-infused materials without influ-
encing the oil retention properties. The viscosity indepen-
dence was validated by repeating the above experiments
with two different oils whose viscosities differ by an order
of magnitude. Despite the different drainage rates be-
tween the two oils, the steady-state wetted lengths were
roughly the same, as shown in Fig. 3(c)-(d).
Another significant design consequence is that the

steady-state length is independent of the groove size.
Though the groove aspect ratio enters the formula for
L∞, through cp, cs, and h/rmin, the magnitude of the
groove size is not important. Grooves with the same as-
pect ratio should have identical steady-state lengths, re-
gardless of whether the depth is 1 µm or 1 mm. However,
when w or h falls into the nano-scale range, long-range
forces may modify the retention behavior; conversely, if
these dimensions or τyx become too large, the Reynolds
number or Bond number may no longer be low enough
for our analysis to remain valid.
Within the parameter range of our analysis, L∞ de-

pends on only the surface tension, contact angle (through
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rmin), and groove aspect ratio, so that options for de-
signing a surface to retain lubricant are limited. In most
cases, the surface tension and the contact angle cannot be
considered adjustable parameters because of the need to
prevent the oil from “cloaking” sessile drops [2, 3, 38, 39].
Thus, the aspect ratio of the grooves, w/h, is the primary
means of tuning oil retention, and the steady-state length
in Eq. (2) depends strongly on this parameter.

To explore the dependence of drainage behavior on
aspect ratio, surfaces with grooves of different width
and different depth were fabricated and tested at three
flow rates (see Supplemental Material). The steady-state
length, L∞, is plotted in Fig. 4(a) along with the theoret-
ical prediction, where L∞ has been normalized by γ/τyx
in order to isolate effects of the aspect ratio. These re-
sults demonstrate that narrower and deeper grooves re-
sult in longer L∞. Fig. 4(b) shows how cp and cs vary
as a function of w/h. Note that 2/3 < cp/cs < 1, so
that groove geometry affects L∞ in Fig. 4(a) primarily
through h/rmin.

We noted earlier that longitudinal grooves provide a
‘reduced-order’ perspective on a variety of more compli-
cated patterned surfaces, and thus we expect surfaces
with a random pattern to follow a similar drainage be-
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FIG. 3. Drainage curves for grooves, plotted as length versus
time, with dimensional results in (a,c) and non-dimensional
results in (b,d). Gray is low viscosity oil at Q = 2 mL/min,
red is high viscosity oil at the same flow rate, and blue is low
viscosity oil at Q = 1 mL/min. The theoretical prediction
from the Supplemental Material is plotted in dashed black.
Top row (a,b) shows the effect of varying flow rate and bot-
tom row (c,d) shows the effect of varying the oil viscosity.
Each line represents the average wetted length of all of the
defect-free grooves from one experiment. Most experiments
contain surface defects that cause multiple grooves to drain
with a different behavior (≈ 5− 10 of the 50 grooves in each
experiment); these grooves are excluded from the averaging.
The plot includes multiple experiments conducted with low
viscosity oil at the higher flow rate in order to indicate the
degree of natural variability in the data.
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FIG. 4. (a) Steady-state length, L∞, normalized by γ/τyx,
for varying groove aspect ratio, with low viscosity oil; Q = 2
mL/min (red), Q = 1 mL/min (blue), and Q = 0.5 mL/min
(orange). Squares are for grooves with h ≈ 10 µm, and circles
are for grooves with h ≈ 20 µm. The theoretical prediction
from Eq. (2), L∞ τyx/γ = 2cph/csrmin is given by the dashed
line. (b) Groove resistance coefficients cp (green), cs (purple),
and the ratio cp/cs (black) as a function of aspect ratio w/h.
Each curve asymptotes to the dashed line of the same color.

havior. To demonstrate the general nature of our find-
ings, we repeated the drainage experiments on a surface
with a micro-fabricated geometry consisting of randomly
placed 10-µm cubes. The film drains from the random
posts following a similar behavior: as with the grooves,
a finite length of the pattern remains fully wetted (see
Fig. 5 and Movie 2). The retention of fluid under shear
is therefore not unique to well-controlled surface geome-
tries, and may be expected on surfaces with industrially
fabricated patterns that are inherently more random.
Our findings suggest a methodology for designing

liquid-infused materials capable of retaining their lubri-
cant up to a design-limited shear stress. We have shown
that the value of this limiting shear can be tuned by ma-
nipulating the aspect ratio of the surface pattern. Extrap-
olating further, the theory suggests a method by which
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FIG. 5. (a) Snapshots of a shear-driven drainage experiment
on a substrate consisting of randomly placed posts. A script
was written in MATLAB to define the uniformly random lo-
cations of the cubes on a 1-µm grid subject to two conditions:
1) that the area density of the posts is 25%, and 2) that
the minimum space between posts is 3 µm (to aid with pho-
tolithography). The pattern is initially filled completely with
low viscosity oil (green). The oil drains due to an external
aqueous flow of Q = 0.5 mL/min. (b) Micrograph of the sili-
con wafer micro-pattern that is used to mold the posts (light
gray), including a surface profile (purple).
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any existing patterned surface may be made resistant to
shear-driven drainage: we predict that oil can be retained
indefinitely if surface features are interrupted by periodic
barriers with a period less than or equal to L∞. For in-
stance, if a grid of barriers with period L∞ is overlaid
on a random rough pattern, the surface will be expected
to retain its lubricant up to the shear value used to de-
termine L∞. Such minimally structured geometries, de-
signed according to the insights from this study, will allow
for greater adoption of liquid-infused surfaces by enabling
their use in applications where they would otherwise fail.
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[8] C. Schönecker, T. Baier, and S. Hardt, Journal of Fluid
Mechanics 740, 168 (2014).

[9] B. Solomon, K. Khalil, and K. Varanasi, Langmuir 30,
10970 (2014).

[10] A. Lafuma and D. Quéré, Nature Materials 2, 457 (2003).
[11] D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin,

P. Silberzan, and S. Moulinet, Europhysics Letters 74,
299 (2006).
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