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Motivated by Weyl semimetals and weakly doped semiconductors, we study transport in a weakly
disordered semiconductor with a power-law quasiparticle dispersion &k o k%. We show, that in 2«
dimensions short-correlated disorder experiences logarithmic renormalisation from all energies in the
band. We study the case of a general dimension d using a renormalisation group, controlled by an
e = 2a—d-expansion. Above the critical dimensions, conduction exhibits a localisation-delocalisation
phase transition or a sharp crossover (depending on the symmetries of the Hamiltonian) as a function
of disorder strength. We utilise this analysis to compute the low-temperature conductivity in Weyl
semimetals and weakly doped semiconductors near and below the critical disorder point.
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Low-temperature conductivity in weakly disordered
metals is usually dominated by elastic scattering pro-
cesses within a narrow shell of momentum states k near
the Fermi surface, |Ex—Er| < 77!, where 7 is the elastic
scattering time. It is usually believed that scattering into
the states outside of this shell is either negligible or may
only renormalise the quasiparticle parameters near the
Fermi surface, not leading to qualitatively new effects.

However, it is well-known that Dirac-type quasiparti-
cles in two dimensions (2D) experience logarithmic renor-
malisation from elastic scattering into all states corre-
sponding to the linear spectrum, as it has been shown
long ago in the context of Ising models[l], degener-
ate semiconductors[2, 3|, integer Hall effect[4], d-wave
superconductors[5], and topological insulators[6]. Re-
cently, a similar renormalisation group (RG) description
for transport in graphene has been developed in Ref. 7
and further discussed in Ref. 8, predicting a logarithmic
dependence of physical observables on electrostatically
tunable charge carrier concentration.

In this paper we show that in a broad class of sys-
tems the transport of particles with kinetic energy E ex-
periences strong renormalisation from elastic scattering
between all states in the band provided the bandwidth
is sufficiently large, W > E, which typically occurs in
semiconductors and semimetals.

We study transport in a weakly disordered semicon-
ductor or a semimetal with a power-law spectrum &,
k® in a d-dimensional space. Our conclusions, regarding
the critical behaviour of a variety of systems, are sum-
marised in Fig. 1. In the critical dimension d. = 2a, as
examplified by graphene[7, 8] (d = 2,« = 1), the disorder
strength is subject to logarithmic renormalisations, qual-
itatively distinct from the weak-localisation corrections.
Transport in materials just below or above the critical
dimension is accessible to a rigorous RG treatment, sup-
plemented by an € expansion, where

e=2a—d. (1)

In the dimensions below critical, d < d., the renormalised
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FIG. 1: (Colour online) Critical behaviour of disorder in ma-
terials with a power-low quasiparticle dispersion &k x k% in
d dimensions. Above the o = d/2 line the effects of disorder
grow at low energies (the strong-disorder regime). Materi-
als below the line exhibit a critical point between the weak-
disorder and strong-disorder regimes.

disorder strength increases at low energies. Above criti-
cal dimensions, the disorder strength increases if its bare
value exceeds a critical value, and flows to zero oth-
erwise. As a result, the conductivity o(vy) displays a
transition[26] as a function of the bare disorder strength,
as summarised, for example, for Weyl semimetal (WSM)
in Fig. 2. Our conclusions persist even for quasiparticle
Hamiltonians with non-trivial sublattice or valley struc-
tures, as, for example, in graphene or WSM.

The model for semiconductors. Let us first consider
critical behaviour in a d-dimensional semiconductor with
the band gap 2A, an isotropic spectrum & = ak® in
the conduction band, and a trivial valley and sublattice
structure. For simplicity, we consider a model, in which
the conductivity is dominated by the electrons in the con-
duction band, e.g., due to a large value of the gap A that
exceeds the bandwidth or the scale ary ®, with r¢ being
the characteristic disorder correlation length, which then
determines the effective ultraviolet cutoff Ko = r; Lof
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FIG. 2: (Colour online) Conductivity of Weyl semimetal at
small finite doping p as a function of the disorder strength
and temperature. The dashed parts of the o(y,T) curves
correspond to the strong-disorder regime and may be affected
by the interference effects at large length scales not studied
here[26].

the theory[9].

We take the disorder potential U(r) to be weak, with
zero-mean and short-range correlated Gaussian statis-
tics, (U(r)U(r"))ais = YK56(r — r’), characterised by
the strength ~9. The short-scale (ultraviolet momentum)
cutoff K is set by the width of the conduction band.

The dc conductivity for zero temperature and Fermi
energy F' is given by the Kubo-Greenwood formula

05 = /dr’ Tr <ﬁirGA(E,r,r’)ﬁjr/GR(E,r',r»dis, (2)

where ¥, = aa(—iV,)*"! is the velocity operator, i =
e = 1, and the trace is taken with respect to (wrt) the
discrete degrees of freedom (spins, valleys, sublattices).
All the energies E are counted from the middle of the
forbidden band, where the chemical potential is located
in an intrinsic semiconductor at 7' = 0. Conductivity at
arbitrary temperature and doping level can be obtained
from Eq. (2) as 0y = — [ dE n(E) 0%, where np(E) is
the Fermi distribution function.

The product of the advanced G4 and retarded G%
Green’s functions in Eq. (2), averaged with respect to
disorder, can be written conveniently in the supersym-
metric representation[10] as

i = /Dﬁmf e[~ (Lo+ Lo, (3)
ﬁo:i/@[A(E—A)—fﬁ—iAﬂ]\Pdr, (4)
Lint = %WKE / (UW)?dr, (5)
where ¥ is a vector in AR ® PH ® F'B space; AR,
PH, and F B being, respectively, the advanced-retarded,

particle-hole, and fermion-boson subspaces; A = GAR @
1P @ 178 and ¥ = ¥IA = (CV)T, where C =

60 ® (6TH @ 1B — 6PH @ 6I'B)/2 and p = —iV,.
The parameters A, v and others will be found to flow
upon renormalisation, with the initial values A(0) = 1,
~v(0) = 7o, and K being the running momentum cutoff,
which starts at K = Ky. In a Fermi liquid A would cor-
respond to the inverse Z-factor, the quasiparticle weight.

RG analysis. Perturbative treatment of disorder leads
to divergent contributions (with vanishing particle en-
ergy E) to physical observables (conductivity, density of
states, etc.). These can be analysed using an RG ap-
proach, which consists in integrating out the modes with
the largest momenta k: K’ < |k| < K. The action is re-
produced with a new momentum cutoff K”, renormalised
gap A(l), and the parameters A(I) and v(l) running ac-
cording to

v
O\ = Ca—s ), (6)
4C,
oy =7+ 37", (7)

where | = In(K/K'), Cq = Sq/(27)?, Sy is the area of a
unit sphere in a d-dimensional space.

Egs. (6)-(7) are the one-loop perturbative RG equa-
tions controlled by the dimensionless measure of disorder
va~2 < 1 and, therefore, break down when this param-
eter flows to a value of order unity. The RG flow is ter-
minated if the ultraviolet cutoff K reaches 1/L, L being
the characteristic size of the sample, or the value K,,, at
which the energy scale a K% /\(K,,) is of the order the
energy FE.

If € > 0, v flows towards larger values in accordance
with Eq. (7). However, for € < 0, v flows to larger values
if initially v > 7., and flows to zero if v < 7., where

e = —£(4Ca) " a? (8)

is the critical fixed point at which v does not flow. We
expect, as is common in the study of critical phenomena,
that such a critical point exists even if € is not small.
We note, that in addition to the random potential, con-
sidered here, there exist other types of disorder, which we
do not consider and which lead to an RG equation simi-
lar to Eq. (7), but with a negative coefficient before the
y2-term (for example, 2D Dirac fermions with random-
mass disorder). In that case, the disorder strength
flows towards smaller values above the critical dimensions
(e < 0) and has an attractive fixed point otherwise[l, 4].
Qualitative interpretation. Effectively the RG coarse-
grains over the random disorder potential on the scale
of a wavelength k!, interpreting a complex of under-
lying impurities on smaller scale as an effective impu-
rity generating a renormalized random potential. The
structure of the linear (in 7) term in the beta-function
in Eq. (7) and the existence of the critical dimension
can be understood qualitatively by comparing the typ-
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volume k¢, with the kinetic energy ak® for momentum
k. If d < 2a, the relative strength of disorder grows as
k — 0. In contrast, for d > 2a the typical potential
decreases at low momenta relative to the kinetic energy.
Carrying this coarse-graining procedure to higher (e.g.,
second) orders[7] in the disorder strength (e.g., by re-
placing a pair of impurities, separated by < k~!, by an
effective impurity) one arrives at the 42 and higher-order
terms in the RG flow equation for the disorder strength.
Solutions. To analyse the low-energy behaviour of the
conductivity, we solve Eqs. (6) and (7) with the result

e __ VOKS
K = T T o &K
A(K) = () KA (o Kg) /4, (10)

At K = K,,, when the RG stops, one arrives at an
effective low-energy theory with a renormalised action,
which can be used further to evaluate physical observ-
ables (conductivity, heat capacitance, magnetic suscepti-
bility, etc.), e.g., in the usual Fermi-liquid approximation.

We now apply the above analysis of the renormalised
field theory [Egs. (3)-(5), (9), (10)] to the conductivity of
a variety of systems. For a finite doping in the conduction
band, corresponding to the Fermi momentum K,,, the
Drude contribution[11] to the conductivity is given by

- '02(Km) - 042(12K72na_2
21y(K)Ke,d 27y (Kp)KEd’

o(Km) (11)
where v(K,,) is the velocity. The Drude formula ne-
glects weak-localisation effects and accurately describes
the conductivity only when they are small and the disor-
der is weak, v(K)a? < 1.

Relevant disorder. Let us consider the case of lower
than critical dimensions, ¢ > 0. This is realised, for ex-
ample, in conventional 2D and 3D semiconductors with a
quadratic dispersion (« = 2) near the bottom of the con-
duction band (the top of the valence band), Fig. 1. At
e > 0 the disorder strength, Eq. (9), grows upon renor-
malisation and diverges at a finite momentum cutoff

Kioe = Ko(1 = 7e/70) "¢ (12)
The singularity in the disorder strength in Eq. (9),
Y(K)K® o (K — Kioe) ™, (13)

signals of the mobility threshold at the momentum (12).
Strictly speaking, our calculation is not a proof of the
localisation of the states with momenta k < Kj,., be-
cause the perturbative RG has to be stopped when the
disorder strength becomes too large, v/a? ~ 1. At mo-
menta k < K, transport and localisation have to be
studied by means of other techniques, such as non-linear
sigma-model[10], derived from our renormalised effective
action.

For sufficiently large temperature 7', the RG flow is
terminated at energies E ~ T, while the disorder is still
weak, ya~2 <« 1. The respective cutoff momentum K
is determined by the condition a K% ~ A\(K)T. In this
case the conductivity remains finite and sufficiently large,
o[K(T)] > o(K*), where K* is the value of momentum
at which the perturbative RG breaks down, y(K*)a=2 ~
1.

For small finite doping in the conduction band and
a large forbidden band A > T, the charge carriers are
described by Boltzmann statistics with the distribution
function np(E) oc T~ *e=E/T_ Using Eqgs. (2), (10) and
(11), we estimate

o(T) oc T4/, (14)

At zero doping the conductivity is exponentially small,
o o e /T as the charge carriers have to get thermally
excited to the conduction band in order to contribute to
transport.

Crritical points of the disorder strength. When the di-
mensionality of space is above its critical value, € < 0,
the flow of v has a critical point .. Near the critical
point the dependency of the conductivity on . — 7o, T,
and the chemical potential can be understood from the
standard scaling arguments|[12].

The characteristic wavelength £ of the charge carriers,
which dominate the conductivity at T" = 0, scales with
small 6y = v, — 70 as § o« |dy|7¥. It can be shown that
the scaling of the conductivity at 7' = 0 is given by the
dimensional analysis, o oc £27¢. This leads to the scaling
form of the conductivity

oP(87) ~ 077D g [(E — A)|sy]~],  (15)

where z is the dynamic critical exponent[12], ¢ is a scaling
function (which, in general, depends on the sign of §v),
and E > A (e.g., due to doping). The conductivity at
zero doping and finite temperature can be obtained by
averaging o () wrt E with the distribution function
n'p(F), yielding

o(6v,T) ~ T¢|5y[" =2 g [T|67] 7], (16)

where g is another scaling function, ( = 0 for gapless
semiconductors (A <« T') and ( = —d/« for gapped semi-
conductors (A > T)).

In particular, at zero temperature in a gapless weakly-
doped material o o |y, — 70|*(4~%). At the critical point
Y = Ye, o(T) o< T2/ and ¢(T) o T¢=2/2=d/« for
gapless and gapped semiconductors respectively.

Dirac-type quasiparticles. The case of higher than
critical dimensions, d > 2«, may be realised in WSM
(cf. Fig. 1), 3D materials with Dirac quasiparticle
spectrum([13-19] (with o = 1) /¥ = vé - k, where
the “pseudospin” & is the vector of Pauli matrices. The
quasiparticle Hamiltonian may also have a non-trivial



sublattice and valley structure, which has to be properly
taken into account. For simplicity, we focus on long-scale
disorder confining the analysis near a single Weyl point.

In 2D our € = 0 RG flow, Egs. (6)-(7), reduces to that
of Ref. [7] for the strongest long-wavelength disorder in
graphene (neglecting the other four types of disorder), cf.
Fig. 1.

An equation similar to Eq. (7) for Weyl fermions has
been also derived in Refs. 2 and 6. In contradiction to
our findings, in Ref. 2 the conductivity has been found
to vanish at weak disorder. We attribute this to the
shortcoming of the large N (number of valleys) approx-
imation, equivalent to the self-consistent Born approx-
imation (SCBA) (also used recently in Ref. 20), which
does not account properly for the renormalisation effects
found here (for the criticism of the SCBA see Refs. 7 and
8).
In order to generalise our RG approach to WSM, we
analyse the quasiparticle Hamiltonian of the form

& =vkti6 -k (17)

At € = 0 it corresponds to a = 3/2, in which case d =
3 is the critical dimensions. At ¢ = —1 the spectrum
(17) turns into that of WSM. So, in order to address
conduction in 3D Weyl semimetal, we carry out the RG
analysis for the dispersion (17) at small € and then in the
spirit of e-expansion set € = —1.

Repeating the above calculation with the spectrum
(17), we arrive at the same RG equations (6)-(7) with
the factor 4 (corresponding to the four equally-weighted
diagrams in Fig. 3) in Eq. (7) replaced by 2 (correspond-
ing to the diagrams a) and b) cancelling each other for
Dirac-type quasiparticles[8]). This leads to the doubling
of the critical disorder strength ~., Eq. (8), and the ex-
ponent, 1/4 — 1/2, in Eq. (10). In 3D v, = 720>

-
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FIG. 3: Diagrams for the renormalisation of the disorder
strength.

Thus, the presence of the pseudospin does not modify
qualitatively the structure of the RG equations and their
solutions, but only changes coefficients of order unity.

Conductivity of Weyl semimetals. The RG equations
(6), (7) yield the values of the critical exponents[6]

v=—ct 2=3/2 (18)

Fore=-1,v=1.
The Drude conductivity of WSM [13, 20-22] [27]

,U2

o= W (19)

with renormalised disorder strength v(K)K~! is again

suppressed for v > 7. at low energies, and remains large

for v < 7. [26].
The elastic scattering time at momentum K
1 2
m(K) = = (20)

v (K)y(K)K=1 K2 [y(K)K 1]

diverges oc K2 at small momenta K — 0, as the disor-
der strength v(K)K ! saturates at a constant value for
Y0 < Ye, (9). The divergent scattering time 7(K) ensures
a finite conductivity o ~ v?v(K)7(K) at low energies,
despite the vanishing density of states v(K). We note,
that at very small momenta K < K,4.. the conductiv-
ity may be dominated by non-perturbative effects from
exponentially rare spatial regions[23].

Eq. (20) implies that the parameter Kv7(K) remains
large under the RG for v < ~. if it was so in the bare
system. Then one may neglect diagrams with crossed im-
purity lines[11] in the system with renormalised parame-
ters, and the weak-localisation corrections to the Drude
conductivity of a 3D material are small.

Thus, at weak disorder, the Drude conductivity in
terms of the renormalised parameters, Eq. (19), accu-
rately describes the full conductivity of WSM. Moreover,
since v(K)K ! saturates at a constant for low energies,
Eq. (19) also describes the conductivity at zero doping
and finite temperature, T > 71, v K, qre.

To compute the conductivity at v < 7. we
use Eq. (19) with the renormalised disorder strength
Y(Kn)K,, given by Egs. (9), (10) [with the aforemen-
tioned 1/4 — 1/2 replacement|, and the flow terminated
by the cutoff K,,, set by vK,, ~ A(K,,)T.

We find

v* Ko Y , % T
oo(T) S (1 e + . W) (21)
for '« W, where W is a constant of the order of Kqv(1—
Y0/7e)Y/?. Eq. (21) is consistent with the scaling theory,
Eq. (16), with the scaling exponents (18).

For vy > 7., the system flows to the strong disorder
regime. As discussed above, the RG may be terminated
by sufficiently high temperature, also ensuring that the
weak-localisation corrections remain small. Similarly to
Eq. (14), we find o(T) ~ vy ' Ko(T/Kjoe)? o< T?5y72.
Close to the critical point Eq. (16) yields o(T) oc T?%/3.

At low temperatures, zero doping, and v > 7. the RG
breaks down when the disorder becomes strong, v ~ v2,
equivalent to the criterion when weak-localisation correc-
tions become important. At the breakdown point the sys-
tem has no small parameters and is characterised by mo-
mentum scale K*. Although the conductivity is strongly
suppressed, single-node Weyl fermions are topologically
protected from localisation[14, 24].

Assuming a finite conductivity ¢ in this regime, we
estimate, using Eq. (9),

o~ Ko (kv 2= (ot =), (22)



where k is a constant of order unity. The linear de-
pendency of the conductivity on the disorder strength,
0% & 79 — 7. near the critical point is consistent with the
predictions of the scaling theory, Egs. (16) and (18).

Ezxperimental implications. Recently, Dirac (Weyl)
quasiparticle dispersion has been reported[15-19] in
Cd3Asy and NazBi, which possibly present a plat-
form for observing the conductivity dependency o(vy,T),
Egs. (21)-(22) and Fig. 2, which we predict. Our re-
sults apply to Weyl materials with short-range-correlated
disorder (e.g., neutral impurities or vacancies) slightly
doped away from the Weyl point or at finite tempera-
tures.
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Note added. While this work was under review in Phys-
ical Review Letters, another paper, Ref. [25], was submit-
ted and published, numerically addressing conductivity
of WSM at zero doping. We present a detailed compari-
son of our results for WSM with those of Ref. [25] in the
Supplemental Material.
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