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We investigate the discovery potential of semileptonic hyperon decays in terms of searches of new physics at
teraelectronvolt scales. These decays are controlled by a small SU(3)-flavor breaking parameter that allows for
systematic expansions and accurate predictions in terms of a reduced dependence on hadronic form factors. We
find that muonic modes are very sensitive to non-standard scalar and tensor contributions and demonstrate that
these could provide a powerful synergy with direct searches of new physics at the LHC.

Introduction.- The meson and baryon semileptonic de-
cays have played a crucial role in the discovery of the V − A
structure [1] and quark-flavor mixing [2] of the (charged cur-
rent) electroweak interactions in the Standard Model (SM).
From a modern perspective, high-precision measurements of
these decays provide a benchmark to test the SM and comple-
ment the direct searches of new physics (NP) at teraelectron-
volt (TeV) energies.

For example, the accurate determination of the elements
Vud and Vus of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix can be used to test its unitarity, constraining NP with char-
acteristic scales as high as Λ ∼ 10 TeV [3]. Furthermore,
one can test the V − A structure of the charged currents in
d→ u transitions using neutron and nuclear β decays [3–9]
and pion decays [10, 11]. Current limits for the associated
NP scale are also at the TeV level, and important improve-
ments are expected from future experiments [12]. Searches
of non-standard d → u transitions can also be done using
LHC data, through e.g. the collision of d and u partons in
the pp → e± + MET + X channel (where MET stands for
missing transverse energy) [12]. This leads to an interesting
synergy between low- and high-energy NP searches in these
flavor-changing processes.

A similar comprehensive analysis of exotic effects in s→ u
transitions has not been done yet. The (semi)leptonic kaon
decays are optimal laboratories for this study due to the in-
tense program of high-precision measurements and accurate
calculations of the relevant form factors that has been car-
ried out over the last decades [13]. Indeed, bounds on right-
handed [14, 15] or scalar and tensor [16] NP interactions
at the 10−2 − 10−3 level (relative to the SM) can be ob-
tained [17, 18]. Generally speaking, (pseudo)scalar and ten-
sor operators modify the spectrum of the decay and a detailed
knowledge of the q2 dependence of the form factors becomes
necessary [19].

In this letter we investigate the physics potential of the
semileptonic hyperon decays (SHD) to search for NP. Al-
though the description of these modes may seem involved
due to the presence of six nonperturbative matrix elements or
form factors, they present interesting features [20–23]: (i) In
the isospin limit, there are a total of 8 different channels,
each having a differential decay rate with a rich angular dis-

tribution that could involve the polarizations of the baryons.
(ii) The same form factors in different channels can be con-
nected to each other and with other observables (e.g. electro-
magnetic form factors) in a model-independent fashion using
the approximate SU(3)-flavor symmetry of QCD. (iii) The
maximal momentum transfer is small compared to the baryon
masses and it is parametrically controlled by the breaking of
this symmetry. Therefore, a simultaneous SU(3)-breaking
and “recoil” expansion can be performed that simplifies, sys-
tematically, the dependence of the decay rate on the form fac-
tors.

On the experimental side there is much room for improve-
ment. Except for the measurements performed by the KTeV
and NA-48 Collaborations in the Ξ0→ Σ+ channel [24–28],
most of the SHD data is more than 30 years old [29]. On
the other hand, (polarized) hyperons could be produced abun-
dantly in the NA62 experiment at CERN [30] [65] or in any
other hadron collider like the future pp̄ facility PANDA [31]
at FAIR/GSI or J-PARC [32].

In the following, we investigate the physics reach of the
SHD with a discussion based on the sensitivity of the total
decay rates to non-standard scalar and tensor interactions. We
show that the bounds from SHD are competitive with those
derived from the LHC data on the pp → e± + MET + X
channel and leave the interplay with kaon decays for future
work (see [14–17] for the current status).

The SM effective field theory.- In the SM, and at energies
much lower than the electroweak symmetry breaking scale,
v = (

√
2GF )−1/2 ' 246 GeV, all charged-current weak pro-

cesses involving up and strange quarks are described by the
Fermi (V − A)× (V − A) four-fermion interaction. Beyond
the SM, the most general effective Lagrangian is [3]:

Leff = −GFVus√
2

(
1 + εL + εR

)
×∑

`=e,µ

[
¯̀γµ(1− γ5)ν` · ū

[
γµ −

(
1− 2εR

)
γµγ5

]
s

+ ¯̀(1− γ5)ν` · ū
[
εS − εP γ5

]
s

+ εT ¯̀σµν(1− γ5)ν` · ūσµν(1− γ5)s
]

+ h.c., (1)
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neglectingO(ε2) terms and derivative interactions, and where
we use σµν = [γµ, γν ]/2. This Lagrangian has been con-
structed using only the SM fields relevant at low scales, µ ∼ 1
GeV, and demanding the operators to be color and electromag-
netic singlets. Furthermore, we have restricted our attention
to non-standard interations that conserve lepton flavor and are
lepton universal. Finally, we assume that the Wilson coeffi-
cients (WC) εi are real, since we focus on CP -even observ-
ables.

In light of the null results in direct searches of NP at col-
liders, we assume that its typical scale, Λ, is much larger
than v. In such case, NP can be parameterized using an
effective (non-renormalizable) Lagrangian, Leff = LSM +

(1/Λ2)
∑
i αiO

(6)
i + . . . , where the O(6)

i are now operators
built with all the SM fields and subject to the structures of
its full (unbroken) gauge symmetry group [34]. The WC εi
in eq. (1) are generated by the high-energy WC αi, which in
turn can be obtained by matching to a particular NP model
at µ = Λ, and by running down to µ ∼ 1 GeV using the
renormalization group equations, with the heavier fermions
and weak bosons integrated out in the process [35–39].

This framework, usually referred to as the SM effective
field theory (SMEFT), allows for a bottom-up investigation of
NP, describing the implications of collider searches for low-
energy experiments and vice versa. Needless to say, this inter-
play would become crucial in shaping the NP if a discrepancy
with the SM is to be found. Examples of top-down applica-
tions, with correlated effects at high- and low-energies, can
be found in scenarios with lepto-quarks [40] or extra scalar
fields [6, 19].

Semileptonic hyperon decays.- Neglecting electromag-
netic corrections, the amplitude for a particular SHD
B1(p1) → B2(p2)`−(p`)ν̄`(pν) factorizes into the leptonic
and baryonic matrix elements. For the (axial)vector hadronic
currents we have the parametrization in terms of the standard
form factors [22, 41]:

〈B2(p2)|ūγµs|B1(p1)〉 = ū2(p2)
[
f1(q2) γµ

+
f2(q2)

M1
σµνq

ν +
f3(q2)

M1
qµ

]
u1(p1), (2)

〈B2(p2)|ūγµγ5s|B1(p1)〉 = ū2(p2)
[
g1(q2)γµ

+
g2(q2)

M1
σµνq

ν +
g3(q2)

M1
qµ

]
γ5u1(p1), (3)

whereas the non-standard (pseudo)scalar and tensor interac-
tions introduce new form factors [41]:

〈B2(p2)|ū s|B1(p1)〉 = fS(q2) ū2(p2)u1(p1), (4)
〈B2(p2)|ū γ5 s|B1(p1)〉 = gP (q2) ū2(p2) γ5 u1(p1), (5)
〈B2(p2)|ū σµν s|B1(p1)〉 ' fT (q2) ū2(p2)σµν u1(p1). (6)

In eqs. (2)-(6), u1,2 are the parent and daughter baryon spinor
amplitudes, M1,2 their respective masses, q = p1 − p2 is the
momentum transfer, with m2

` ≤ q2 ≤ (M1 −M2)2. Further-
more, in Eq. (6) we have neglected other contributions to the

matrix element of the tensor current since they are kinemati-
cally suppressed ∼ O(q/M1) [41].

A crucial aspect in the study of the SHD is the approxi-
mate SU(3)-flavor symmetry of QCD. It controls the phase
space of the decay and allows for a systematic expansion of
the observables in the generic symmetry breaking parameter,
δ = (M1 −M2)/M1 [21]. Furthermore, with currents Jb that
transform as an octet under SU(3) with flavor index b, one
has 〈Ba|Jb|Bc〉 = FJ(q2) fbac +DJ(q2) dbac, where FJ(q2)
and DJ(q2) are reduced matrix elements, fabc are the SU(3)
structure constants and dabc the so-called d-coefficients (see
e.g. Ref. [42]). The ∼ O(δ) symmetry-breaking corrections
can be calculated using model independent methods [43–50].
In addition, the form factors can be expanded around q2 = 0
in powers of q2/M2

X ∼ δ2, whereMX ∼ 1 GeV is a hadronic
scale related to the mass of the resonances coupling to the cur-
rents [51, 52].

Let us illustrate this with the total decay rate for the elec-
tronic mode in the SM which, expanded up to next-to-leading
order (NLO) in δ and neglecting me, is [21]:

Γe, SM '
G2
F |Vus f1(0)|2 ∆5

60π3

[(
1− 3

2
δ

)
+3

(
1− 3

2
δ

)
g1(0)2

f1(0)2
− 4δ

g2(0)

f1(0)

g1(0)

f1(0)

]
, (7)

with ∆ = M1 − M2. This expression contains a minimal
dependence on the form factors. No information on their q2

dependence is required and, moreover, the last term can be
neglected because the weak-electric charge, g2(0), is itself
O(δ) [41]. Thus, besides GF and Vus, and up to a theoret-
ical accuracy of O(δ2) ∼ 1 − 5%, the total decay rate of the
electronic mode in the SM only depends on hyperon vector
and axial charges, f1(0) and g1(0). Eq. (7) makes manifest
that f1(0) is essential for extracting Vus from the rates, while
the ratio g1(0)/f1(0) can be obtained measuring the angular
distribution of the final lepton [21, 22]. Neglected electromag-
netic corrections are of a few percent [21, 53], well within the
accuracy achieved at NLO in the SU(3) expansion.

Beyond the SM, we generally have two types of effects. On
one hand, (axial)vector modifications to the SM, described by
the WC εL,R, can be arranged (cf. Eq. 1) into a change of
the normalization of the rate according to the replacement
Vus → Ṽus = (1 + εL + εR)Vus, and of the axial cou-
pling to the leptonic current by the factor (1 − 2εR). The
former combination involves a modification of Vus which
has been tightly constrained by testing CKM unitarity [3].
The latter could be determined in SHD from the measured
g1(0) → g̃1(0) = (1 − 2εR)g1(0) only if g1(0) was known
accurately from QCD (for recent progress in the lattice see
Refs. [54, 55]).

On the other hand, the WC εS,P,T introduce new structures
in the energy and angular distributions. Restricting ourselves
to O(v2/Λ2) (or linear in the WC), they appear from the in-
terference of the NP terms with the SM and the contributions
of the (pseudo)scalar and tensor operators are suppressed by
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TABLE I: Comparison between the predictions of Rµe in the SM at
NLO and experimental measurements for different SHD.

Λ→ p Σ− → n Ξ0 → Σ+ Ξ− → Λ

Expt. 0.189(41) 0.442(39) 0.0092(14) 0.6(5)

SM-NLO 0.153(8) 0.444(22) 0.0084(4) 0.275(14)

m`/
√
q2. Therefore, while the electronic channels can be an-

alyzed specifically to measure and study the normalization of
the rates |Ṽus f1(0)| and the relevant form factors, the muonic
modes could use the information thus obtained to constrain
the (pseudo)scalar and tensor operators. Besides that, it is im-
portant to note that the pseudoscalar quark bilinear receives a
kinematical O(q/M1) suppression that largely neutralizes the
sensitivity of SHD to εP (see however Ref. [9]). For this rea-
son, we center our discussion below on the study of εS and
εT .

We expand the contributions in the SM up to O(δ), but we
keep only the leading terms in the NP terms. This implies
a relative O(δ2) error in the SM predictions, which we fix
to a 5% in all channels for definiteness, and an uncertainty
O(δ) ∼ 10− 20% in the sensitivity to NP that will not affect
the conclusions of our analysis.

Bounds on scalar and tensor operators.- Let us now in-
troduce the ratio:

Rµe =
Γ(B1 → B2 µ

− ν̄µ)

Γ(B1 → B2 e− ν̄e)
. (8)

This observable is not only sensitive to lepton-universality vi-
olation but also linearly sensitive to εS and εT . In addition,
one expects the dependence on the form factors in the SM to
simplify in the ratio. In fact, working at NLO we obtain:

RµeSM =

√
1−

m2
µ

∆2

(
1− 9

2

m2
µ

∆2
− 4

m4
µ

∆4

)

+
15

2

m4
µ

∆4
arctanh

(√
1−

m2
µ

∆2

)
. (9)

This is a remarkable result: up to a relative theoretical accu-
racy of O(δ2), Rµe in the SM does not depend on any form
factor. In Table I we compare the experimental ratios to the
results predicted in the SM. As discussed above, the main rea-
son for the large experimental errors is that most of the data
in the muonic channel is very old and scarce. At this level of
precision, which generously covers the theoretical accuracy
attained by Eq. (9), we observe that the experimental data on
Rµe agrees with the SM.

One can now use this consistency of the data with the SM
to set bounds on the WC of the scalar and tensor operators,
which generate the following non-standard contribution:

RµeNP '

(
εS

fS(0)
f1(0) + 12 εT

g1(0)
f1(0)

fT (0)
f1(0)

)
(1− 3

2δ)
(

1 + 3 g1(0)2

f1(0)2

) Π(∆,mµ), (10)

where Π(∆,mµ) is a phase-space integral:

Π(∆,mµ) =
5

2

mµ

∆

[(
2 + 13

m2
µ

∆2

)√
1−

m2
µ

∆2

−3

(
4
m2
µ

∆2
+
m4
µ

∆4

)
arctanh

(√
1−

m2
µ

∆2

)]
. (11)

It is particularly convenient to express the dependence on the
WC in “units” of the SM ratio:

Rµe

RµeSM

= 1 + rS εS + rT εT , (12)

where rS,T are dimensionless numbers encapsulating the net
sensitivity to the WC.

TABLE II: SHD data for g1(0)/f1(0) and theoretical determinations
of fS,T (0)/f1(0) at µ = 2 GeV used in this work. The correspond-
ing rS,T are shown in the last two lines.

Λ→ p Σ−→ n Ξ0→ Σ+ Ξ−→ Λ

g1(0)/f1(0) 0.718(15) −0.340(17) 1.210(50) 0.250(50)

fS(0)/f1(0) 1.90(10) 2.80(14) 1.36(7) 2.25(11)

fT (0)/f1(0) 0.72 −0.28 1.22 0.22

rS 1.60 4.1 0.56 3.7

rT 5.2 1.7 7.2 1.1

The values of the form factors that we use to calculate rS,T
are given in Tab. II. The ratio g1(0)/f1(0) is measured from
the angular distribution of the electronic channels [29]. The
scalar form factor can be obtained, up to electromagnetic cor-
rections, using the conservation of vector current in QCD,
fS(0)/f1(0) = ∆/(ms −mu) [9]. For the tensor form fac-
tors we need to use model calculations [56], whose errors are
difficult to quantify. Nevertheless, it is interesting to note that
the tensor form factor for the neutron β-decay is predicted
to be 1.22, which is in the ballpark of the values obtained
in the lattice [6, 55, 57–59]. This situation should be easily
improved by future lattice calculations of the hyperon decay
tensor charges.

The sensitivities to εS,T exhibited by the SHD (last two
lines of Tab. II) are strongly channel-dependent. In Fig. 1,
we show 90% confidence level contours in the (εS , εT ) plane
using a χ2 that includes the experimental measurements of
Rµe and where we propagate the experimental and theoretical
uncertainties of the SM predictions in quadratures. For rS,T
we use the values in Tab. II. As we can see, even though the
experimental data on Rµe is not precise, the strong sensitivity
of SHD to NP leads to stringent bounds in εS,T ; namely:

εS = 0.003(40), εT = 0.017(34) , (13)

at 90% C.L. Accounting for the running of εS,T on the
renormalization scale µ [60], and assuming natural values
for the WC at µ = Λ, these bounds translate into Λ ∼
v (Vus εS,T )−1/2 ∼ 2− 4 TeV [12].
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FIG. 1: 90% CL constraints on εS,T at µ = 2 GeV from the measure-
ments of Rµe in different channels (dot-dashed lines) and combined
(filled ellipse). LHC bounds obtained from CMS data at

√
s = 8

TeV (7 TeV) are represented by the black solid (dashed) ellipse.

Limits from LHC data.- As discussed above, the SMEFT
allows to interpret model-independently high- and low-
energies searches of NP. In particular the cross-section
σ(pp → e + MET + X) with transverse mass higher than
mT is modified by non-standard ūs → eν̄ partonic interac-
tions as follows:

σ(mT>mT ) = σW + σS |εS |2 + σT |εT |2 , (14)

where σW (mT ) represents the SM contribution and
σS,T (mT ) are new functions, which explicit form can be
found in Ref. [12] (up to trivial flavor indexes changes). Thus,
comparing the observed events above mT with the SM expec-
tation we can set bounds on εS,T . In particular, one (three)
event is found with a transverse mass above mT = 1.5 TeV
(1.2 TeV) in the 20 fb−1 (5 fb−1) dataset recorded at

√
s =

8 TeV (7 TeV) by the CMS collaboration [61, 62], in good
agreement with the SM background of 2.02±0.26 (2.8±1.0)
events. Using Eq. (14) this agreement translates in the 90%
C.L. limits on εS,T shown in Fig. 1. We use the MSTW2008
PDF sets evaluated at Q2 = 1 TeV2 [63] to calculate σS,T .
Further details can be found in Ref. [12].

Fig. 1 illustrates the interesting competition that future
SHD measurements could have with LHC searches of NP af-
fecting s→ u transitions. It is important to note that the de-
pendence of the cross section (14) on the WC is quadratic,
whereas in SHD is linear. Besides reducing the sensitivity of
the future collider searches of NP in this channel, one might
also need to consider possible cancellations with linear effects
from dimension-8 operators in the SMEFT.

Conclusions and outlook.- In summary, the most impor-
tant features of SHD in relation to searches of NP at TeV

scales are: (i) The SHD are controlled by a small SU(3)-
breaking parameter, allowing for systematic expansions that
lead to accurate expressions in terms of a reduced depen-
dence on form factors, cf. Eq. (9). (ii) The interference of
the (pseudo)scalar and tensor NP operators with the SM in
the rate is chirally suppressed. Therefore, electronic modes
are well suited to measure normalization factors |Ṽus f1(0)|,
NP-modified g̃1(0) and other form factors. (iii) The muonic
modes, on the other hand, show a strong linear sensitivity to
scalar and tensor contributions that depend on the different
combinations of form factors in each channel. This allows
to constrain them using SHD alone, with a precision that is
competitive with the LHC data, cf. Fig. 1 and Eq. (13).

Our hope is that the present study triggers a program of
high-precision measurements of different observables in the
SHD. Hyperons can be produced in great numbers in cur-
rent [30, 32] and future facilities [31]. One may also wonder
if better measurements could be extracted from the analysis
of the data collected in past experiments like HyperCP [64],
KTeV and NA48. Any development on the experimental side
will directly improve the bounds on NP obtained in this work
with an observable as simple as Rµe, and using data with
∼ 10− 20% relative errors.

Future improvements on the experimental precision will
need to be accompanied by similar efforts on the theory side.
In particular, the inclusion of O(δ2) terms in the SM predic-
tions would improve the accuracy to ∼ 1% − 1h. Besides
that, further nonperturbative calculations of the tensor form
factors would improve the assessment of the sensitivity to εT .
Finally, it will be important to perform this comprehensive
analysis of the SHD in complementarity with the kaon decays.
Work along these lines is in progress.
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