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We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states
are well approximated as a probabilistic mixture of multi-fold product states. The approxima-
tion is measured by distinguishability under fully one-way LOCC (local operations and classical
communication) measurements. Our result strengthens Brandão and Harrow’s de Finetti theorem
where a kind of partially one-way LOCC measurements was used for measuring the approximation,
with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time
algorithm which detects multipartite entanglement with amount larger than an arbitrarily small
constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that
in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a
single prover when the verifier is restricted to one-way LOCC operations.

Consider random variables X1, ..., Xn representing the
color of a sequence of balls drawn without replacement
from a bag of 100 red balls and 100 blue balls. These
variables are not independent, since the probability of
withdrawing a red ball on the kth withdrawl depends
on the number of balls of each color remaining. They
are, however, exchangeable: the probability of removing
a particular sequence of balls (x1, ..., xn) is equal to the
probability of removing any reordering of that sequence
(xπ(1), ..., xπ(n)) for permuatation π. Remarkably, the de
Finetti theorem tells us that any such exchangeable ran-
dom variables can be represented by independent and
identically distributed ones [1, 2], yeilding a profound re-
sult in probability theory and a powerful tool in statistics.

A series of works have established analogues of this
theorem in the quantum domain [3–10], where a classical
probability distribution is replaced by a quantum state
and the situation is more complicated and interesting,
due to entanglement and the existence of many differ-
ent ways to distinguish states of multipartite systems.
These quantum de Finetti theorems are appealing not
only due to their own elegance on the characterization
of symmetric states, but also because of the successful
applications in many-body physics [5, 11, 12], quantum
information [9, 13, 14], and computational complexity
theory [10, 15, 16].

More precisely, a quantum de Finetti theorem concerns
the structure of a symmetric state ρA1...An

that is invari-
ant under any permutations over the subsystems [17]. It
tells how the reduced state ρA1...Ak

on a smaller number
k < n of subsystems could be approximated by a mix-
ture of k-fold product states, namely, de Finetti states

of the form
∫

σ⊗k dµ(σ). Here µ is a probability mea-
sure over density matrices. Using the conventional dis-
tance measure, trace norm, Ref. [8] proved a standard de
Finetti theorem with an essentially optimal error bound
2|A|2k/n for the approximation (|A| denotes the dimen-
sion of the subsystems). However, in many situations this
bound is too large to be applicable. Luckily it is possible
to circumvent this obstruction. For example, Renner’s
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FIG. 1: Parallel vs. fully one-way LOCC. (a) LOCC
‖
1
: Paral-

lel one-way LOCC measurements used in [10]. Here the first
k− 1 parties make measurements in parallel and report their
outcomes to the kth, who then makes a measurement that
depends on the messages he receives. (b) LOCC1: Fully one-
way LOCC measurements. We adopt a more complete gener-
alization of one-way LOCC: all the parties measure their own
systems sequentially, but in a fully adaptive way where each
party chooses his own measurement setting depending on the
outcomes of all the previous measurements performed by the
other parties.

exponential de Finetti theorem employs the “almost de
Finetti states” and has an error bound that decreases ex-
ponentially in n− k [9], being very useful in dealing with
cryptography or information theory problems [9, 13, 14].
In a beautiful work [10] Brandão and Harrow recently

proved an LOCC (local operations and classical commu-
nication) de Finetti theorem, generalizing a similar result
for the case k = 2 [16]. Both [10] and [16] have over-
come the limitation of the standard de Finetti theorem
regarding the dimension dependence. The basic idea is
to relax the measure of approximation by employing a
kind of one-way LOCC norm. This gives an error bound
√

2k2 ln |A|
n−k

[18], scaling polynomially in ln |A| instead of

polynomially in |A| as in earlier de Finetti results, which
is crucial to the complexity-theoretic applications.
While [10] showed approximation in the parallel one-

way LOCC norm associated with the measurement class

LOCC
‖
1
, here we prove a de Finetti theorem where the ap-

proximation is measured with the fully one-way LOCC
norm (or relative entropy) associated with LOCC1 (cf.
Fig. 1). The error bound remains essentially the same as
that of [10]. This improves Brandão and Harrow’s LOCC
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de Finetti theorem considerably: it is conceptually more
complete and when applied to the problems considered
in [10, 16, 19] gives new and improved results. For entan-
glement detection, a central problem in quantum infor-
mation theory and experiment, we present strong guar-
antees for the effectiveness of the well-known heirarchy
of entanglement tests of [20]. We also consider the power
of multiple-prover quantum Merlin Arthur games, which
bears directly on the problems of pure-state vs mixed-
state N -representability [21] as well as the entanglement
properties of sparse hamiltonian’s ground states [22].

Operational norms as distance measures. We
identify every positive operator-valued measure {Mx}x
with a measurement operation M: for any state ω,
M(ω) :=

∑

x |x〉〈x|Tr(ωMx) with {|x〉}x an orthonor-
mal basis. For simplicity we call them both quantum
measurement. Given a class of measurements M, the op-
erational norm is defined as [23]

‖ρ− σ‖M = max
M∈M

‖M(ρ)−M(σ)‖1.

It measures the distinguishability of two quantum states
under restricted classes of measurements. We will be
particularly interested in ‖·‖LOCC1

and ‖·‖
LOCC

‖
1

. In fact,

these two norms can differ substantially: using a recent
result obtained in [24], we can show for all d there are
constant C and d×d×2 states ρABC and σABC such that
‖ρABC − σABC‖LOCC1

= 2 but ‖ρABC − σABC‖LOCC
‖
1

≤
C/

√
d (see the Supplemental Material [25]).

Improved LOCC de Finetti theorem. Our main re-
sult is the following Theorem 1. Besides the improvement
with the fully one-way LOCC norm, for the first time
we employ relative entropy D(ρ‖σ) = Tr ρ(log ρ − log σ)
to measure the approximation, defining DLOCC1

(ρ‖σ) :=
maxΛ∈LOCC1

D(Λ(ρ)‖Λ(σ)).
In the proof, we will use information-theoretic methods

similar to [10], along with some new ideas. In particu-
lar, Lemma 2 presented below is a crucial technical tool,
which may be of independent interest. We employ and
manipulate entropic quantities to derive the final result:
apart from relative entropy, the mutual information of
a state ωAB is defined as I(A;B) := D(ωAB‖ωA ⊗ ωB),
and the conditional mutual information of a state ωABC

is defined as I(A;B|C) := I(A;BC) − I(A;C).

Theorem 1 Let ρA1...An
be a permutation-invariant

state on H⊗n
A . Then for integer 0 ≤ k ≤ n there ex-

ists a probability measure µ on density matrices on HA

such that

DLOCC1

(

ρA1...Ak

∥

∥

∫

σ⊗k dµ(σ)
)

≤ (k − 1)2 log |A|
n− k

, (1)

∥

∥

∥

∥

ρA1...Ak
−
∫

σ⊗k dµ(σ)

∥

∥

∥

∥

LOCC1

≤
√

2(k − 1)2 ln |A|
n− k

. (2)

Proof. Eq. (2) follows from Eq. (1) immediately by using
the Pinsker’s inequality [26], D(ρ‖σ) ≥ 1

2 ln 2‖ρ−σ‖21. So
it suffices to prove Eq. (1).
Group the n subsystems as shown in Fig. 2: except

for one subsystem, the others are divided into groups of
k−1 subsystems each (we discard the possibly remaining
qubits, of which there will be fewer than k − 1). So, we
have m = ⌊n−1

k−1 ⌋ ≥ n−k
k−1 groups. Label the groups as big-

ger subsystems B1, B2, . . . , Bm and the isolated system
as A. Let the k−1 subsystems in B1 be A1, A2, . . . , Ak−1

and the system A is also identified with Ak.

•
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•
•

•

1
A

1−k
A

4
A 2

A

3
A

•••

A
2

B
m

B
1

B

k
A

•
•

•

FIG. 2: Grouping and relabeling the n subsystems.

Obviously the total state is invariant under permuta-
tions over B1, B2, . . . , Bm. So Lemma 3 applies. Thus
there exists a measurement Q∗ : B2 . . . Bm → X , such
that for any measurement P : B1 → Y we have

I(A;Y |X) ≤ log |A|
m

≤ (k − 1) log |A|
n− k

. (3)

Q∗ effectively decomposes the state on AB1 into an en-
semble. Specifically, we have ρAB1 =

∑

x pxρ
x
A1...Ak

,
where px is the probability of obtaining the measurement
outcome x and ρxA1...Ak

is the resulting state on A1 . . . Ak.
Note that since ρA1...An

is permutation-invariant, the
post-measurement states ρxA1...Ak

are also permutation-
invariant. Now we rewrite Eq. (3) in terms of the relative
entropy: for any measurement P on A1 . . . Ak−1,

∑

x

pxD
(

P ⊗ idAk(ρxA1...Ak
)
∥

∥P(ρxA1...A(k−1)
)⊗ ρxAk

)

≤ (k − 1) log |A|
n− k

. (4)

Pick a one-way LOCC measurement Λk acting on sys-
tems A1, . . . , Ak and denote its reduced measurement on
the first ℓ systems as Λℓ. Now we apply Lemma 2 to each
state ρxA1...Ak

and get

D
(

Λk(ρxA1...Ak
)
∥

∥Λk(ρxA1
⊗ . . .⊗ ρxAk

)
)

(5)

≤
k
∑

ℓ=2

D
(

Λℓ−1 ⊗ id(ρxA1...Aℓ
)
∥

∥Λℓ−1(ρxA1...A(ℓ−1)
)⊗ ρxAℓ

)

≤(k−1)D
(

Λk−1⊗id(ρxA1...Ak
)
∥

∥Λk−1(ρxA1...A(k−1)
)⊗ρxAk

)
)

,

where for the first inequality we have also applied the
monotonicity of relative entropy [27] and for the second
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inequality we used the monotonicity of relative entropy
again as well as the symmetry of the state ρxA1...Ak

. Com-
bining Eq. (4) and Eq. (5) we arrive at

D
(

Λk(ρA1...Ak
)
∥

∥Λk(
∑

x

pxρ
x
A1

⊗ . . .⊗ ρxAk
)
)

≤
∑

x

pxD
(

Λk(ρxA1...Ak
)
∥

∥Λk(ρxA1
⊗ . . .⊗ ρxAk

)
)

≤(k − 1)2 log |A|
n− k

,

(6)

where the first inequality is due to the joint convexity of
relative entropy. At this point we are able to conclude
Eq. (1) from Eq. (6), noticing that Λk ∈ LOCC1 is picked
arbitrarily and

∑

x pxρ
x
A1

⊗. . .⊗ρxAk
is a de Finetti state of

the form
∑

x px(ρ
x
A)

⊗k due to the symmetry of ρxA1...Ak
.
⊓⊔

Lemma 2 Let Λk be a fully one-way LOCC measure-

ment on quantum systems A1, . . . , Ak. Denote its re-

duced measurement corresponding to the first ℓ steps on

A1, . . . , Aℓ as Λℓ. Then for any state ρA1...Ak
we have

D
(

Λk(ρA1...Ak
)‖Λk(ρA1 ⊗ . . .⊗ ρAk

)
)

=

k
∑

ℓ=2

D
(

Λℓ(ρA1...Aℓ
)‖Λℓ(ρA1...A(ℓ−1)

⊗ ρAℓ
)
)

.

Proof. It suffices to show

D
(

Λk(ρA1...Ak
)‖Λk(ρA1 ⊗ . . .⊗ ρAk

)
)

=D
(

Λk−1(ρA1...Ak−1
)‖Λk−1(ρA1 ⊗ . . .⊗ ρAk−1

)
)

+D
(

Λk(ρA1...Ak
)‖Λk(ρA1...Ak−1

⊗ ρAk
)
)

,

(7)

because applying this relation recursively allows us
to obtain the equation claimed in Lemma 2. Write
Λk−1(ρA1...Ak−1

) =
∑

x px|x〉〈x| and Λk−1(ρA1 ⊗ . . . ⊗
ρAk−1

) =
∑

x qx|x〉〈x|. Let Λk be realized as follows. We
first apply Λk−1 on A1, . . . , Ak−1. Then depending on
the measurement outcome x we apply a measurement
Mx on Ak. Thus we can write

Λk(ρA1...Ak
) =

∑

x

px|x〉〈x| ⊗Mx(ρ
x
Ak

),

Λk(ρA1...Ak−1
⊗ ρAk

) =
∑

x

px|x〉〈x| ⊗Mx(ρAk
),

Λk(ρA1 ⊗ . . .⊗ ρAk
) =

∑

x

qx|x〉〈x| ⊗Mx(ρAk
),

where ρxAk
is the state of Ak when Λk−1 is applied on

ρA1...Ak
and outcome x is obtained. With these, we can

confirm by direct computation that

D
(

Λk(ρA1...Ak
)‖Λk(ρA1 ⊗ . . .⊗ ρAk

)
)

=D
(

Λk−1(ρA1...Ak−1
)‖Λk−1(ρA1 ⊗ . . .⊗ ρAk−1

)
)

+
∑

x

pxD
(

Mx(ρ
x
Ak

)‖Mx(ρAk
)
)

(8)

and

D
(

Λk(ρA1...Ak
)‖Λk(ρA1...Ak−1

⊗ ρAk
)
)

=
∑

x

pxD
(

Mx(ρ
x
Ak

)‖Mx(ρAk
)
)

. (9)

Eq. (8) and Eq. (9) together lead to Eq. (7) and this
concludes the proof. ⊓⊔
Remark. The quantity D (ρA1...Ak

‖ρA1 ⊗ . . .⊗ ρAk
) is

sometimes denoted as I(A1;A2; . . . ;Ak)ρ and called
the multipartite mutual information. It is easy to
see that I(A1; . . . ;Ak) = I(A1 . . . Aℓ;Aℓ+1 . . . Ak) +
I(A1; . . . ;Aℓ) + I(Aℓ+1; . . . ;Ak). Using this repeatedly
we can write the multipartite mutual information as a
sum of bipartite mutual information quantities. This de-
composition can be done in many different ways depend-
ing on how we split the subsystems. Lemma 2 is a similar
result. However, with the one-way LOCC measurement
Λk, the decomposition only works for our special choice
of splitting.
The following lemma, a statement of the monogamy of

entanglement, is adapted from [10]. For completeness we
give a proof in the Supplemental Material [25].

Lemma 3 Let ρAB1...Bm
be a state that is invariant un-

der any permutation over B1, B2, . . . , Bm. Let PB1→Y

and QB2...Bm→X be measurement operations performed

on systems B1 and B2 . . . Bm, respectively. We have

min
Q

max
P

I(A;Y |X)idA⊗P⊗Q(ρAB1...Bm ) ≤
log |A|
m

.

Applications. Using Theorem 1, we obtain a couple of
interesting results as follows. The technical proofs are
given in the Supplemental Material [25].

Detecting multipartite entanglement. Deciding whether
a density matrix is entangled or separable is one of the
most basic problem in quantum information theory [28].
Despite the existence of many entanglement criteria, up
to date the only complete ones that detect all entangled
states are infinite hierarchies [28]. Among them searching
for symmetric extensions is probably the most useful [20].
This is exactly the scenario where quantum de Finetti
theorems could be expected to be useful.
We consider the situation where a small error ǫ is per-

mitted, meaning that we must detect all the entangled
states except for those very weak ones that are ǫ-close
to separable (at the same time all the separable states
should be detected correctly). This is equivalently formu-
lated as the Weak Membership Problem for separability:
given a state ρA1A2...Ak

that is either separable or ǫ-away
from any separable state, we want to decide which is the
case. It has been shown that this problem is NP-hard
when ǫ is of the order no larger than inverse polynomial
of local dimensions (in trace norm) [29–31]. Surprisingly,
Brandão, Christandl and Yard found a quasipolynomial-
time algorithm for constant ǫ in one-way LOCC norm for
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bipartite states [16]. This algorithm was generalized to
multipartite states in [19], then in [10] using a stronger
method. These algorithms are all based on the searching
for symmetric extensions of [20]. Along these lines, we
present the following result, which is obtained by apply-
ing Theorem 1 to bound the distance between properly
extendible states and separable states.

Corollary 4 Testing multipartite entanglement of a

state ρA1A2...Ak
with constant error ǫ can be done via

searching for symmetric extensions in time

exp



c

(

k
∑

i=1

log |Ai|
)2

k2f(ǫ)



 , (10)

where f(ǫ) = ǫ−2 if the error is measured by the norm

‖ · ‖LOCC1
and f(ǫ) = ǫ−1 if it is measured by the relative

entropy DLOCC1
.

The algorithm in [19] using LOCC1-norm behaves expo-
nentially slower than ours with respect to the number of
particles k, while the algorithm of [10] has the same run-

time as ours but works only for LOCC
‖
1
-norm rather than

our LOCC1-norm approximation. Thus our result has
bridged the gap between these two works. Furthermore,
here for the first time we catch the importance of the
amount of entanglement in this problem. The quantity
ELOCC1

r (ρ) := min{DLOCC1
(ρ‖σ) : σ being separable},

introduced in [32], is asymptotically normalized since
ELOCC1

r (Φd) = log(d + 1) − 1 for maximally entangled
state Φd of local dimension d [33]. Corollary 4 shows
that, detecting all the k-partite entangled states ρ such
that ELOCC1

r (ρ) ≥ ǫ can be done in quasi-polynomial time
in local dimensions. This is a stronger statement than us-
ing LOCC1-norm as the error measure. We point out that
for the bipartite case this result can also be obtained by
combining the algorithm of [16] with the “commensurate
lower bound” for squashed entanglement of [33].

QMA proof system with multiple proofs. QMA, the quan-
tum analogue of the complexity class NP, is the set of
decision problems whose solutions can be efficiently veri-
fied on a quantum computer, provided with a polynomial-
size quantum proof [34]. In recent years there have been
significant advances on the structure of QMA systems,
where multiple unentangled proofs and possibly locally
restricted measurements in the verification were consid-
ered [10, 16, 35–37]. It has been proven that many nat-
ural problems in quantum physics are characterized by
QMA proof systems (see, e.g., [21, 22, 38, 39]).
To solve a problem, the verifier performs a quantum

algorithm on the input x ∈ {0, 1}n along with the quan-
tum proofs. The algorithm then returns “yes” or “no” as
the answer to the instance x. This procedure of verifica-
tion can be effectively described as a set of two-outcome
measurements {(Mx, 11 − Mx)}x on the proofs. In the

definition below, a problem is formally identified with a
“language”.

Definition 5 A language L is in QMAM(k)m,c,s if

there exists a polynomial-time implementable verification

{(Mx, 11 −Mx)}x with each measurement from the class

M such that

• Completeness: If x ∈ L, there exist k states as

proofs ω1, . . . , ωk, each of size m qubits, such that

Tr (Mx(ω1 ⊗ . . .⊗ ωk)) ≥ c.

• Soundness: If x /∈ L, then for any ω1, . . . , ωk,

Tr (Mx(ω1 ⊗ . . .⊗ ωk)) ≤ s.

We are also interested in QMA systems with multi-
ple symmetric proofs. SymQMAM(k)m,c,s is defined in
a similar way but here we replace independent proofs
ω1, . . . , ωk with identical ones ω⊗k in both completeness
and soundness parts. As a convention, we set M to be
ALL (the class of all measurements), m = poly(n), k = 1,
c = 2/3 and s = 1/3 as defaults [41]. We can now state
our application of Theorem 1 to these complexity classes.

Corollary 6 We have

QMA = QMALOCC1(poly) = SymQMALOCC1(poly). (11)

In particular,

SymQMALOCC1(k)m,c,s ⊆ QMA0.6m2k2ǫ−2,c,s+ǫ, (12)

QMALOCC1(k)m,c,s ⊆ QMA0.6m2k4ǫ−2,c,s+ǫ (13)

In words, Eq. (11) shows that polynomially many
provers are not more powerful than a single one when
the verifier is restricted to one-way LOCC measure-
ments. This generalizes the result obtained in [16] that
QMA = QMALOCC1(k) for constant k. It is also a general-
ization of the results in [10, 42] which prove the reduction
of QMALO(k) to QMA (LO denotes local measurements).
Arguably the biggest open question in the study of

QMA proof systems is whether QMA = QMA(2) (note
that Harrow and Montanaro have proved that QMA(2) =
QMA(k) for any polynomial k > 2 [37]). On the one
hand, there are natural problems from quantum physics
that are in QMA(2) but not obviously in QMA [21, 22, 39].
On the other hand, Harrow and Montanaro showed that
if the first equality in Eq. (11) holds for a kind of separa-
ble measurements (even only for the case of two proofs),
then QMA = QMA(2). Our result here, although does
not touch this open question directly, is a step towards a
larger measurement class compared to [10] and we hope
it will stimulate future progress in solving this open ques-
tion.

Polynomial optimization over hyperspheres. Theorem 1
also gives some improved results on the usefulness of
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a general SDP relaxation method, called the Sum-of-
Squares (SOS) hierarchy [43, 44], for polynomial opti-
mization over hyperspheres (see, e.g., [10, 45]). The rel-
evance in physics is that pure states of a quantum sys-
tem form exactly a hypersphere and hence some com-
putational problems in quantum physics are indeed to
optimize a polynomial over hyperspheres. See the Sup-
plemental Material [25] for details.

Discussions. The advantage of our method, inherited
from [10], is that it tells us more information than that
of [16, 33] about the valid de Finetti (separable) state
that approximates the symmetric (extendible) state. As
a result, we obtain a huge improvement over [19] on
the particle-number dependence, and we are able to
strengthen the relation QMA = QMALOCC1(k) from the
constant k of [16] to polynomial k. We hope that the
de Finetti theorem presented in this letter will find more
applications in the future.
We ask whether Theorem 1 can be further improved,

to work for two-way LOCC or even separable measure-
ments. This would accordingly give stronger applica-
tions, and possibly, solve the QMA vs QMA(2) puzzle due
to the result of [37]. Another open question is, in Theo-
rem 1, for a state supported on the symmetric subspace
(aka Bose-symmetric state), whether its reduced states
have pure-state approximations of the form

∫

ϕ⊗k dµ(ϕ)
with ϕ pure. We notice that this is indeed the case for the
de Finetti theorem of [8] and a similar statement holds
for [9]. However, our method, as well as that of [10] seems
to require that the state ϕ must be generally mixed.
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